sodium-hypochlorite and Hemorrhagic-Fever--Ebola

sodium-hypochlorite has been researched along with Hemorrhagic-Fever--Ebola* in 6 studies

Other Studies

6 other study(ies) available for sodium-hypochlorite and Hemorrhagic-Fever--Ebola

ArticleYear
Assessment of recommended approaches for containment and safe handling of human excreta in emergency settings.
    PloS one, 2018, Volume: 13, Issue:7

    Ebola and cholera treatment centres (ETC and CTC) generate considerable quantities of excreta that can further the transmission of disease amongst patients and health workers. Therefore, approaches for the safe handling, containment and removal of excreta within such settings are needed to minimise the likelihood of onward disease transmission. This study compared the performance and suitability of three chlorine-based approaches (0.5% HTH, NaDCC and NaOCl (domestic bleach)) and three lime-based approaches (10%, 20% and 30% Ca(OH)2). The experiments followed recent recommendations for Ebola Treatment Centres. Three excreta matrices containing either raw municipal wastewater, or raw municipal wastewater plus 10% or 20% (w/v) added faecal sludge, were treated in 14 litre buckets at a ratio of 1:10 (chlorine solutions or lime suspensions: excreta matrix). The effects of mixing versus non-mixing and increasing contact time (10 and 30 mins) were also investigated. Bacterial (faecal coliforms (FC) and intestinal enterococci (IE)) and viral (somatic coliphages (SOMPH), F+specific phages (F+PH) and Bacteroides fragilis phages (GB-124PH)) indicators were used to determine the efficacy of each approach. Lime-based approaches provided greater treatment efficacy than chlorine-based approaches, with lime (30% w/v) demonstrating the greatest efficacy (log reductions values, FC = 4.75, IE = 4.16, SOMPH = 2.85, F+PH = 5.13 and GB124PH = 5.41). There was no statistical difference in efficacy between any of the chlorine-based approaches, and the highest log reduction values were: FC = 2.90, IE = 2.36, SOMPH = 3.01, F+PH = 2.36 and GB124PH = 0.74. No statistical difference was observed with respect to contact time for any of the approaches, and no statistical differences were observed with respect to mixing for the chlorine-based approaches. However, statistically significant increases in the efficacy of some lime-based approaches were observed following mixing. These findings provide evidence and practical advice to inform safe handling and containment of excreta and ensure more effective health protection in future emergency settings.

    Topics: Calcium Compounds; Chlorine; Cholera; Disinfectants; Disinfection; Feces; Halogenation; Hemorrhagic Fever, Ebola; Humans; Oxides; Sewage; Sodium Hypochlorite; Wastewater; Water Microbiology

2018
Selection of a Biosafety Level 1 (BSL-1) surrogate to evaluate surface disinfection efficacy in Ebola outbreaks: Comparison of four bacteriophages.
    PloS one, 2017, Volume: 12, Issue:5

    The 2014 West African Ebola virus disease outbreak was the largest to date, and conflicting, chlorine-based surface disinfection protocols to interrupt disease transmission were recommended. We identified only one study documenting surface disinfection efficacy against the Ebola virus, showing a >6.6 log reduction after 5-minute exposure to 0.5% sodium hypochlorite (NaOCl) based on small-scale tests (Cook et al. (2015)). In preparation for future extensive, large-scale disinfection efficacy experiments, we replicated the Cook et al. experiment using four potential BSL-1 surrogates selected based on similarities to the Ebola virus: bacteriophages MS2, M13, Phi6, and PR772. Each bacteriophage was exposed to 0.1% and 0.5% NaOCl for 1, 5, and 10 minutes on stainless steel. MS2 and M13 were only reduced by 3.4 log and 3.5 log after a 10-minute exposure to 0.5% NaOCl, and would be overly conservative surrogates. Conversely, PR772 was too easily inactivated for surrogate use, as it was reduced by >4.8 log after only 1-minute exposure to 0.5% NaOCl. Phi6 was slightly more resistant than the Ebola virus, with 4.1 log reduction after a 5-minute exposure and not detected after a 10-minute exposure to 0.5% NaOCl. We therefore recommend Phi6 as a surrogate for evaluating the efficacy of chlorine-based surface disinfectants against the Ebola virus.

    Topics: Bacteriophages; Disease Outbreaks; Disinfectants; Disinfection; Dose-Response Relationship, Drug; Hemorrhagic Fever, Ebola; Humans; Models, Biological; Sodium Hypochlorite; Time Factors

2017
Surface Cleaning and Disinfection: Efficacy Assessment of Four Chlorine Types Using Escherichia coli and the Ebola Surrogate Phi6.
    Environmental science & technology, 2017, 04-18, Volume: 51, Issue:8

    In the 2014 West African Ebola outbreak, international organizations provided conflicting recommendations for disinfecting surfaces contaminated by uncontrolled patient spills. We compared the efficacy of four chlorine solutions (sodium hypochlorite, sodium dichloroisocyanurate, high-test hypochlorite, and generated hypochlorite) for disinfection of three surface types (stainless steel, heavy-duty tarp, and nitrile) with and without pre-cleaning practices (prewiping, covering, or both) and soil load. The test organisms were Escherichia coli and the Ebola surrogate Phi6. All tests achieved a minimum of 5.9 and 3.1 log removal in E. coli and Phi6, respectively. A 15 min exposure to 0.5% chlorine was sufficient to ensure <8 Phi6 plaque-forming unit (PFU)/cm

    Topics: Chlorine; Disinfectants; Disinfection; Escherichia coli; Hemorrhagic Fever, Ebola; Humans; Sodium Hypochlorite

2017
Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response.
    PloS one, 2016, Volume: 11, Issue:5

    In Ebola Virus Disease (EVD) outbreaks, it is widely recommended to wash living things (handwashing) with 0.05% (500 mg/L) chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% (5,000 mg/L) chlorine solution. Chlorine solutions used in EVD response are primarily made from powdered calcium hypochlorite (HTH), granular sodium dichloroisocyanurate (NaDCC), and liquid sodium hypochlorite (NaOCl), and have a pH range of 5-11. Chlorine solutions degrade following a reaction highly dependent on, and unusually sensitive to, pH, temperature, and concentration. We determined the shelf-life of 0.05% and 0.5% chlorine solutions used in EVD response, including HTH, NaDCC, stabilized NaOCl, generated NaOCl, and neutralized NaOCl solutions. Solutions were stored for 30 days at 25, 30, and 35°C, and tested daily for chlorine concentration and pH. Maximum shelf-life was defined as days until initial concentration fell to <90% of initial concentration in ideal laboratory conditions. At 25-35°C, neutralized-NaOCl solutions (pH = 7) had a maximum shelf-life of a few hours, NaDCC solutions (pH = 6) 2 days, generated NaOCl solutions (pH = 9) 6 days, and HTH and stabilized NaOCl solutions (pH 9-11) >30 days. Models were developed for solutions with maximum shelf-lives between 1-30 days. Extrapolating to 40°C, the maximum predicted shelf-life for 0.05% and 0.5% NaDCC solutions were 0.38 and 0.82 hours, respectively; predicted shelf-life for 0.05% and 0.5% generated NaOCl solutions were >30 and 5.4 days, respectively. Each chlorine solution type offers advantages and disadvantages to responders, as: NaDCC is an easy-to-import high-concentration effervescent powder; HTH is similar, but forms a precipitate that may clog pipes; and, NaOCl solutions can be made locally, but are difficult to transport. We recommend responders chose the most appropriate source chlorine compound for their use, and ensure solutions are stored at appropriate temperatures and used or replaced before expiring.

    Topics: Calcium Compounds; Chlorine Compounds; Disinfectants; Disinfection; Drug Stability; Ebolavirus; Hand Disinfection; Hemorrhagic Fever, Ebola; Humans; Sodium Hypochlorite; Triazines

2016
The Disinfection Characteristics of Ebola Virus Outbreak Variants.
    Scientific reports, 2016, 12-02, Volume: 6

    The recent Ebola virus outbreak in West Africa has forced experts to re-evaluate their understanding of how to best disinfect areas contaminated with infectious bodily fluids. Recent research has found that Ebola virus remains viable in blood for 7-10 days making appropriate disinfection crucial to infection control. We sought to determine if the three most important outbreak variants of Zaire ebolavirus (Mayinga, Kikwit and Makona) exhibit separate phenotypes when challenged with a range of sodium hypochlorite (NaOCl) concentrations or 70% ethanol (EtOH) at average West African temperature. The time dependent killing of Ebola virus was evaluated by measuring infectious virus and viral RNA (vRNA), to determine if RNA detection is a viable method for decontamination measurement in areas without high containment laboratory access. Makona was less susceptible to weaker concentrations of NaOCl (0.05 and 0.1%) than Mayinga and Kikwit. At the recommended concentration of NaOCl (≥0.5%) all of the variants were inert after 5 minutes of contact time. Similarly, all variants were inactivated by 70% EtOH after 2.5 minutes, only Makona was detected at 1 minute. In multiple instances, high amounts of vRNA was detected in the absence of infectious virus, suggesting that it does not serve as an accurate measure of remaining infectivity after cleansing.

    Topics: Africa, Western; Disease Outbreaks; Disinfectants; Disinfection; Ebolavirus; Ethanol; Hemorrhagic Fever, Ebola; Humans; Microbial Sensitivity Tests; RNA, Viral; Sodium Hypochlorite; Virion

2016
Effect of viral decontamination measures on Wright-stained blood smears.
    Blood, 2015, Feb-19, Volume: 125, Issue:8

    Topics: Blood Cells; Blood Specimen Collection; Bone Marrow Cells; Decontamination; Hematologic Tests; Hemorrhagic Fever, Ebola; Hot Temperature; Humans; Sodium Hypochlorite; Staining and Labeling; Viral Load; Virus Inactivation

2015