sodium-dodecyl-sulfate and Brain-Ischemia

sodium-dodecyl-sulfate has been researched along with Brain-Ischemia* in 3 studies

Other Studies

3 other study(ies) available for sodium-dodecyl-sulfate and Brain-Ischemia

ArticleYear
Lithium upregulates growth-associated protein-43 (GAP-43) and postsynaptic density-95 (PSD-95) in cultured neurons exposed to oxygen-glucose deprivation and improves electrophysiological outcomes in rats subjected to transient focal cerebral ischemia foll
    Neurological research, 2022, Volume: 44, Issue:10

    Lithium has numerous neuroplastic and neuroprotective effects in patients with stroke. Here, we evaluated whether delayed and short-term lithium treatment reduces brain infarction volume and improves electrophysiological and neurobehavioral outcomes following long-term recovery after cerebral ischemia and the possible contributions of lithium-mediated mechanisms of neuroplasticity.. Male Sprague Dawley rats were subjected to right middle cerebral artery occlusion for 90 min, followed by 28 days of recovery. Lithium chloride (1 mEq/kg) or vehicle was administered via intraperitoneal infusion once per day at 24 h after reperfusion onset. Neurobehavioral outcomes and somatosensory evoked potentials (SSEPs) were examined before and 28 days after ischemia-reperfusion. Brain infarction was assessed using Nissl staining. Primary cortical neuron cultures were exposed to oxygen-glucose deprivation (OGD) and treated with 2 or 20 μM lithium for 24 or 48 h; subsequent brain-derived neurotrophic factor (BDNF), growth-associated protein-43 (GAP-43), postsynaptic density-95 (PSD-95), and synaptosomal-associated protein-25 (SNAP-25) levels were analyzed using western blotting.. Compared to controls, lithium significantly reduced infarction volume in the ischemic brain and improved electrophysiological and neurobehavioral outcomes at 28 days post-insult. In cultured cortical neurons, BDNF, GAP-43, and PSD-95 expression were enhanced by 24- and 48-h treatment with lithium after OGD.. Lithium upregulates BDNF, GAP-43, and PSD-95, which partly accounts for its improvement of neuroplasticity and provision of long-term neuroprotection in the ischemic brain.

    Topics: Animals; Brain Ischemia; Brain-Derived Neurotrophic Factor; Disks Large Homolog 4 Protein; Edetic Acid; GAP-43 Protein; Glucose; Glycogen Synthase Kinase 3 beta; Infarction, Middle Cerebral Artery; Lithium; Lithium Chloride; Male; N-Methylaspartate; Neurons; Neuroprotective Agents; Oxygen; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Sodium Dodecyl Sulfate

2022
Simultaneous determination of myo-inositol and scyllo-inositol by MEKC as a rapid monitoring tool for inositol levels.
    Electrophoresis, 2007, Volume: 28, Issue:8

    A simple and rapid MEKC method was developed for the simultaneous determination of myo-inositol, scyllo-inositol, and glucose. Prior to electrophoretic separation, the nonfluorescent inositols and glucose were derivatized by N-methylisatoic anhydride at 25 degrees C for 10 min so that they could be detected by a fluorescence detector during separation. The good separation with high efficiency by MEKC was achieved in 13 min with a glycine buffer containing SDS and PEG 4000. Several parameters affecting the separation were studied, including the pH of BGE, the concentrations of glycine, SDS, and PEG 4000, and the applied voltage. Using glycerol as an internal standard, the linear ranges of the method for myo-inositol, scyllo-inositol, and glucose were 0.03-10, 0.01-5, and 0.05-20 mM; the concentration LODs of myo-inositol, scyllo-inositol, and glucose were 0.020, 0.0078, and 0.026 mM, respectively. The method was applied to analyze extracellular myo-inositol and glucose in the microdialysates from rat brain cortex of ischemia animal model and intracellular myo-inositol and scyllo-inositol in the rat brain extract.

    Topics: Anhydrides; Animals; Brain Ischemia; Chromatography, Micellar Electrokinetic Capillary; Glucose; Glycine; Hydrogen-Ion Concentration; Inositol; Male; ortho-Aminobenzoates; Polyethylene Glycols; Rats; Rats, Sprague-Dawley; Sodium Dodecyl Sulfate; Stereoisomerism

2007
Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size.
    Stroke, 1998, Volume: 29, Issue:5

    Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that degrade the extracellular matrix and are implicated in numerous pathological conditions including atherosclerosis, inflammation, and tumor growth and metastasis. In the brain, the endothelial cell wall, strengthened by tight junctions, defines the blood-brain barrier (BBB). The extracellular matrix molecules constitute the basement membrane underlying the vasculature and play a critical role in maintaining the integrity of the BBB. After focal stroke, there is a breakdown of the BBB with an associated increase in vascular permeability, inflammatory cell influx, and neuronal cell death. The present study was designed to investigate the effects of MMP expression after stroke.. Focal stroke was produced by permanent middle cerebral artery occlusion (MCAO) in the rat, and MMP protein expression was measured by Western blot and zymogram analysis over a time course ranging from 6 hours to 30 days (n=32). Immunohistochemistry at 1 and 5 days (n=8 and 6, respectively) was also utilized to characterize the expression of several MMPs and related proteins after stroke, including their cellular source. To test the hypothesis that early increased MMP-9 expression is involved in ischemic brain injury, a neutralizing monoclonal antibody directed against MMP-9 was administered intravenously (n=7 per group) 1 hour before MCAO, and infarct size was measured 24 hours later.. MMP expression increased progressively over time after stroke. After 12 hours, significant (P<0.05) MMP-9 activity was observed that reached maximum levels by 24 hours (P<0.001), then persisted for 5 days at this level and returned to basal (zero) levels by 15 days. On the basis of morphological criteria, MMP-9 appeared to stain with endothelial cells and neutrophils identified both within and at the periphery of the infarct within 24 hours of focal ischemia. After 5 days, MMP-9 appeared to stain with macrophages present within the infarcted brain. MMP-2 activity was significantly (P<0.001) increased by 24 hours and was maximum after 5 days following MCAO. MMP-2 appeared to stain with macrophages present within the infarcted region. Unlike MMP-9 and MMP-2, tissue inhibitor of metalloproteinase-1 was identified at comparable levels in both control and ischemic tissue after MCAO. MMP-1 and MMP-3 could not be detected in the brain after focal stroke. When an MMP-9-neutralizing monoclonal antibody was administered systemically, animals exhibited significantly reduced infarct size (ie, a 30% reduction compared with non-immune antibody controls; P<0.05).. These results demonstrate that early increased MMP-9 expression in endothelial cells and infiltrating neutrophils is a significant response to cerebral focal ischemia and that selective inhibition of MMP-9 activity can significantly reduce brain injury after stroke.

    Topics: Animals; Antibodies, Monoclonal; Arterial Occlusive Diseases; Brain Injuries; Brain Ischemia; Cerebral Arteries; Cerebral Infarction; Collagenases; Electrophoresis, Polyacrylamide Gel; Endothelium, Vascular; Enzyme Induction; Gelatinases; Immunohistochemistry; Macrophages; Male; Matrix Metalloproteinase 1; Matrix Metalloproteinase 2; Matrix Metalloproteinase 3; Matrix Metalloproteinase 9; Matrix Metalloproteinase Inhibitors; Metalloendopeptidases; Neutrophils; Protease Inhibitors; Rats; Rats, Inbred SHR; Sodium Dodecyl Sulfate; Time Factors; Tissue Extracts; Tissue Inhibitor of Metalloproteinase-1; Tissue Inhibitor of Metalloproteinases

1998