sodium-chlorate has been researched along with Zoonoses* in 1 studies
1 other study(ies) available for sodium-chlorate and Zoonoses
Article | Year |
---|---|
Escherichia coli O157:H7 populations in sheep can be reduced by chlorate supplementation.
Ruminant animals are a natural reservoir of the foodborne pathogen Escherichia coli O157:H7. Some foodborne pathogens (e.g., E. coli) are equipped with a nitrate reductase that cometabolically reduces chlorate. The intracellular reduction of chlorate to chlorite kills nitrate reductase-positive bacteria; however, species that do not reduce nitrate are not affected by chlorate. Therefore, it has been suggested that ruminants be supplemented with chlorate prior to shipment for slaughter in order to reduce foodborne illnesses in human consumers. Sheep (n = 14) were fed a high-grain ration and were experimentally infected with E. coli O157:H7. These sheep were given an experimental product (XCP) containing the equivalent of either 2.5 mM NaNO3 and 100 mM NaCl (control sheep; n = 7) or 2.5 mM NaNO3 and 100 mM NaClO3 (chlorate [XCP]-treated sheep; n = 7). Control and XCP-treated sheep were treated for 24 h; XCP treatment reduced the population of inoculated E. coli O157:H7 (P < 0.05) from 10(2), 10(5), and 10(5) CFU/g in the rumen, cecum, and rectum, respectively, to < 10(1) CFU/g in all three sections of the gastrointestinal tract. The number of sheep testing positive for E. coli O157:H7 was significantly reduced by XCP treatment. In a similar fashion, total E. coli and coliforms were also reduced (P < 0.05) in all three compartments of the intestinal tract. Intestinal pH, total volatile fatty acid production, and the acetate/propionate ratio were unaffected by XCP treatment. On the basis of these results, it appears that chlorate treatment can be an effective method for the reduction of E. coli O157:H7 populations in ruminant animals immediately prior to slaughter. Topics: Animals; Chlorates; Colony Count, Microbial; Consumer Product Safety; Digestive System; Disease Reservoirs; Disease Transmission, Infectious; Drinking; Escherichia coli O157; Food Microbiology; Humans; Random Allocation; Sheep; Zoonoses | 2003 |