sodium-chlorate and Escherichia-coli-Infections

sodium-chlorate has been researched along with Escherichia-coli-Infections* in 3 studies

Trials

2 trial(s) available for sodium-chlorate and Escherichia-coli-Infections

ArticleYear
Continuous, low-dose oral exposure to sodium chlorate reduces fecal generic Escherichia coli in sheep feces without inducing clinical chlorate toxicosis.
    Journal of animal science, 2015, Volume: 93, Issue:4

    Our objectives were to determine an effective, yet safe, daily dose of sodium chlorate for reducing fecal shedding of generic Escherichia coli in mature ewes. In a completely randomized experimental design, 25 Targhee ewes (age ∼ 18 mo; BW = 62.5 ± 7.3 kg, mean ± SD) were assigned randomly to 1 of 5 sodium chlorate treatments, which were administered in the drinking water for 5 consecutive days. Treatments were control group (no sodium chlorate) and 4 targeted levels of daily sodium chlorate intake: 30, 60, 90, and 120 mg · kg(-1) BW · d(-1) for 5 d. Individual ewe ad libitum intake of water (with treatments) was measured daily, and BW was measured at the beginning of and 15 and 51 d after the 5-d treatment period. Serum chlorate, whole blood methemoglobin and packed-cell volume (PCV), and fecal generic E. coli and general Enterobacteriaceae coliforms were measured from corresponding samples collected at the end of the 5-d treatment period. Average daily intakes of sodium chlorate from drinking water treatments were 95%, 91%, 90%, and 83% of the target treatment intakes of 30, 60, 90, and 120 mg · kg(-1) BW · d(-1), respectively. Daily sodium chlorate intake remained constant for all treatment groups except for ewes offered 120 mg NaClO3 · kg(-1) BW · d(-1), which decreased (quadratic; P = 0.04) over the course of the 5-d treatment period. This decrease in sodium chlorate intake indicated that the 120-mg NaClO3 level may have induced either toxicity and/or an aversion to the drinking water treatment. Serum chlorate concentrations increased (quadratic; P < 0.001) with increasing sodium chlorate intake. At the end of the 5-d treatment period, mean (least squares ± SEM) serum chlorate concentrations for ewes offered 30, 60, 90, and 120 mg NaClO3 · kg(-1) BW · d(-1) were 15.6 ± 14.1, 32.8 ± 15.8, 52.9 ± 14.1, and 90.3 ± 14.1 μg/mL, respectively. Whole blood methemoglobin and PCV were similar (P = 0.31 to 0.81) among the control group and ewes offered sodium chlorate. Likewise, BW was not affected by sodium chlorate (P > 0.27). Ewes consuming approximately 55 mg NaClO3 · kg(-1) BW · d(-1) or more (i.e., ewes offered 60, 90, and 120 mg) had a >1.4 log unit reduction in fecal E. coli and Enterobacteriaceae coliforms compared with control ewes. We suggest that for a short-term, 5-d dosing strategy, 55 to 81 mg NaClO3 · kg(-1) BW · d(-1) is an effective, yet safe, daily oral dose range for mature ewes to achieve a 97% to 99% reduction in fecal shedding of generic

    Topics: Administration, Oral; Animal Husbandry; Animals; Body Weight; Chlorates; Dose-Response Relationship, Drug; Escherichia coli; Escherichia coli Infections; Feces; Female; Herbicides; Methemoglobin; Sheep; Sheep Diseases; Sheep, Domestic; Toxicological Phenomena; Treatment Outcome

2015
Sodium chlorate reduces the presence of Escherichia coli in feces of lambs and ewes managed in shed-lambing systems.
    Journal of animal science, 2012, Volume: 90, Issue:1

    Our objective was to establish doses of orally administered NaClO(3) that reduced the presence of generic Escherichia coli in intestines of ewes and neonatal lambs managed in a shed-lambing system. Neonatal lambs (n = 32; age = 7.1 ± 1.2 d; BW = 6.8 ± 1.0 kg) and yearling ewes (n = 44; BW = 74.8 ± 5.6 kg) were used in 2 experiments. In both experiments, lambs and ewes were randomly assigned to 1 of 4 groups, and groups were randomly assigned to 1 of 4 treatments. In Exp. 1, neonatal lambs were given single, aqueous, oral doses of saline (control; NaCl, 30 mg·kg of BW(-1)) or 30, 60, or 90 mg of NaClO(3)·kg(-1) of BW. At 25.9 ± 1.3 h after treatment, lambs were euthanized, and intestinal contents were collected aseptically. In Exp. 2, ewes were given single, aqueous, oral doses of saline (NaCl, 150 mg·kg of BW(-1)) or 150, 300, or 450 mg of NaClO(3)·kg(-1) of BW. At 24.0 ± 0.8 h after treatment, fecal samples were collected aseptically from the rectum of each ewe. For both experiments, generic E. coli were enumerated from intestinal contents and feces within 4 to 12 h after collection. In Exp. 1, the effect (P = 0.08) of NaClO(3) on the presence of generic E. coli in colon contents was dose-dependent. This effect was linear (P < 0.01) and negative, which indicated that as NaClO(3) dose increased, generic E. coli that could be isolated from colon contents decreased. Specifically, lambs dosed with 60 and 90 mg of NaClO(3)·kg(-1) of BW had fewer E. coli cfu·g(-1) of content than control lambs (P < 0.06). Lambs dosed with 90 mg of NaClO(3)·kg(-1) of BW had fewer E. coli cfu·g(-1) of content than lambs dosed with 30 mg of NaClO(3)·kg(-1) of BW (P = 0.09). Sodium chlorate dose did not influence (P = 0.58) the presence of generic E. coli in contents collected from the cecum. In Exp. 2, the effect (P < 0.0001) of NaClO(3) on the presence of E. coli in fecal contents from ewes was dose-dependent. This effect was quadratic (P < 0.0001) and negative; ewes dosed with 150, 300, and 450 mg of NaClO(3)·kg(-1) of BW had fewer E. coli cfu·g(-1) of feces than control ewes. No differences in E. coli cfu·g(-1) of feces were detected between NaClO(3) treatments (P = 0.88 to 0.97). Based on these results, a single oral dose of at least 60 and 150 mg of NaClO(3)·kg(-1) of BW in neonatal lambs and yearling ewes, respectively, significantly decreased the presence of generic E. coli in contents from the lower intestine.

    Topics: Animals; Animals, Newborn; Chlorates; Colony Count, Microbial; Diarrhea; Dose-Response Relationship, Drug; Escherichia coli; Escherichia coli Infections; Feces; Female; Idaho; Sheep; Sheep Diseases

2012

Other Studies

1 other study(ies) available for sodium-chlorate and Escherichia-coli-Infections

ArticleYear
Effect of intravenous or oral sodium chlorate administration on the fecal shedding of Escherichia coli in sheep.
    Journal of animal science, 2013, Volume: 91, Issue:12

    The effect of gavage or intravenous (i.v.) administration of sodium chlorate salts on the fecal shedding of generic Escherichia coli in wether lambs was studied. To this end, 9 lambs (27 ± 2.5 kg) were administered 150 mg NaClO3/kg BW by gavage or i.v. infusion in a crossover design with saline-dosed controls. The crossover design allowed each animal to receive each treatment during 1 of 3 trial periods, resulting in 9 observations for each treatment. Immediately before and subsequent to dosing, jugular blood and rectal fecal samples were collected at 4, 8, 16, 24, and 36 h. Endpoints measured were fecal generic E. coli concentrations, blood packed cell volume (PCV), blood methemoglobin concentration, and serum and fecal sodium chlorate concentrations. Sodium chlorate had no effects (P > 0.05) on blood PVC or methemoglobin. Fecal generic E. coli concentrations were decreased (P < 0.05) approximately 2 log units (99%) relative to controls 16 and 24 h after sodium chlorate infusion and 24 h after sodium chlorate gavage. Within and across time and treatment, fecal chlorate concentrations were highly variable for both gavage and i.v. lambs. Average fecal sodium chlorate concentrations never exceeded 100 µg/g and were typically less than 60 µg/g from 4 to 24 h after dosing. Times of maximal average fecal sodium chlorate concentration did not correspond with times of lowered average generic E. coli concentrations. Within route of administration, serum sodium chlorate concentrations were greatest (P < 0.01) 4 h after dosing; at the same time point, serum chlorate was greater (P< 0.01) in i.v.-dosed lambs than gavaged lambs but not at 16 or 24 h (P > 0.05). At 8 h, serum chlorate concentrations of gavaged lambs were greater (P < 0.05) than in i.v.-dosed lambs. Serum chlorate data are consistent with earlier studies indicating very rapid transfer of orally dosed chlorate to systemic circulation, and fecal chlorate data are consistent with earlier data showing the excretion of low to marginal concentrations of sodium chlorate in orally dosed animals. Efficacy of sodium chlorate at reducing fecal E. coli concentrations after i.v. infusion suggests that low concentrations of chlorate in gastrointestinal contents, delivered by biliary excretion, intestinal cell sloughing, or simple diffusion, are effective at reducing fecal E. coli levels. Alternatively, chlorate could be eliciting systemic effects that influence fecal E. coli populations.

    Topics: Administration, Intravenous; Administration, Oral; Animals; Bacterial Shedding; Chlorates; Escherichia coli; Escherichia coli Infections; Feces; Herbicides; Sheep; Sheep Diseases

2013