sodium-chlorate has been researched along with Breast-Neoplasms* in 3 studies
3 other study(ies) available for sodium-chlorate and Breast-Neoplasms
Article | Year |
---|---|
Obligatory requirement of sulfation for P-selectin binding to human salivary gland carcinoma Acc-M cells and breast carcinoma ZR-75-30 cells.
Stimulated endothelial cells and activated platelets express P-selectin, which reacts with P-selectin glycoprotein ligand-1 (PSGL-1) for leukocyte rolling on the stimulated endothelial cells and heterotypic aggregation of the activated platelets on leukocytes. P-selectin also binds to several cancer cells in vitro and promotes the growth and metastasis of human colon carcinoma in vivo. The P-selectin/PSGL-1 interaction requires tyrosine sulfation. However, it is unknown whether sulfation is necessary for P-selectin binding to somatic cancer cells. In this study, we show that P-selectin mediated adhesion of Acc-M cells, a cell line derived from a human adenoid cystic carcinoma of salivary gland. These cells had a moderate expression of heparan sulfate-like proteoglycans, but had no detectable expressions of PSGL-1, CD24, Lewis(x), and sialyl Lewis(x). Treatment with sodium chlorate (a sulfation biosynthesis inhibitor), but not 4-methylumbelliferyl-beta-D-xyloside (a proteoglycan biosynthesis inhibitor) or heparinases, reduced adhesion of these cells to P-selectin. Sodium chlorate also inhibited the P-selectin precipitation of the 160-, 54-, and 36-kDa molecules from the cell surface of Acc-M cells. Furthermore, P-selectin could bind to human breast carcinoma ZR-75-30 cells in a sulfation-dependent manner. Our results thus indicate that sulfation is essential for adhesion of nonblood-borne, epithelial-like human cancer cells to P-selectin. Topics: Antigens, CD; Breast Neoplasms; Carcinoma; CD24 Antigen; Cell Adhesion; Chlorates; Flow Cytometry; Heparan Sulfate Proteoglycans; Humans; Membrane Glycoproteins; P-Selectin; Protein Binding; Salivary Gland Neoplasms; Sulfates; Tumor Cells, Cultured | 2002 |
Role of heparan sulphate proteoglycans in the regulation of human lactoferrin binding and activity in the MDA-MB-231 breast cancer cell line.
We previously demonstrated that lactoferrin increases breast cell sensitivity to natural killer cell cytotoxicity whereas haematopoietic cells are unaffected by lactoferrin. It has been described that lactoferrin binds to various glycosaminoglycans. Compared to haematopoietic cells, breast cancer cells and particularly the breast cell line MDA-MB-231, possess a high level of proteoglycans. Scatchard analysis of 125I-lactoferrin binding to MDA-MB-231 cells revealed the presence of two classes of binding sites: a low affinity site with a Kd of about 700 nM and 3.9 x 10(6) sites and a higher affinity class with a Kd of 45 nM and 2.9 x 10(5) sites per cell. To investigate the potential regulation of lactoferrin activity by proteoglycans expressed on the MDA-MB-231 cells, we treated these cells with glycosaminoglycan-degrading enzymes or sodium chlorate, a metabolic inhibitor of proteoglycan sulphation. We showed that chondroitinase treatment has no effect, while heparinase or chlorate treatment significantly reduces both the binding of lactoferrin to cell surface sulphated molecules such as heparan sulphate proteoglycans (HSPG) and the affinity of lactoferrin for the higher affinity binding sites. The modulation of the lactoferrin binding was correlated with a decrease in lactoferrin activities on both MDA-MB-231 cell sensitisation to lysis and proliferation. Taken together, these results suggest that the presence of adequately sulphated molecules, in particular HSPG, is important for lactoferrin interaction and activity on the breast cancer cells MDA-MB-231. Topics: Breast Neoplasms; Cell Division; Cell Membrane; Chlorates; Chondroitin ABC Lyase; Female; Glycosaminoglycans; Heparan Sulfate Proteoglycans; Heparin Lyase; Humans; Iodine Radioisotopes; Killer Cells, Natural; Lactoferrin; Tumor Cells, Cultured | 1998 |
[Involvement of sulfated proteoglycans in the control of proliferation of MCF-7 breast cancer cells].
The MCF-7 breast cancer cells exhibit remarkable growth enhancement in response to basic fibroblast growth factor (FGF-2) stimulation in a dose dependent manner. To investigate the involvement of proteoglycans on control of FGF-2 induced proliferation, polysaccharide chains were degraded by specific enzymes. Our results showed that MCF-7 cells were unsensitive to FGF-2 after enzymatic degradation of heparin sulfate proteoglycans (HSPG) by heparinase. After metabolic inhibition of sulphation by sodium chloride, radiolabelled proteoglycans were purified and quantified by ion exchange chromatography. Sodium chlorate treatment reduced by 70% sulfation of proteoglycans. This decrease of sulphation totally inhibited FGF-2-mediated proliferation. The sulphated glycosaminoglycans which were critical in FGF-2-induced proliferation were strictly HSPG, as an addition of heparin in cell culture medium can restore FGF-2 mitogenic activity. In contrast, other glycosaminoglycans (chondroitin sulfate/hyaluronic acid) did not show any effect. These results provide clear evidence for the critical role of HSPG in FGF-2-induced proliferation on MCF-7 breast cancer cells. Topics: Breast Neoplasms; Cell Division; Chlorates; Female; Fibroblast Growth Factor 2; Glycosaminoglycans; Heparan Sulfate Proteoglycans; Heparitin Sulfate; Humans; Proteoglycans; Tumor Cells, Cultured | 1996 |