sodium-bisulfite has been researched along with Cardiovascular-Diseases* in 2 studies
2 other study(ies) available for sodium-bisulfite and Cardiovascular-Diseases
Article | Year |
---|---|
Trichosanthis Pericarpium Aqueous Extract Protects H9c2 Cardiomyocytes from Hypoxia/Reoxygenation Injury by Regulating PI3K/Akt/NO Pathway.
Trichosanthis Pericarpium (TP) is a traditional Chinese medicine for treating cardiovascular diseases. In this study, we investigated the effects of TP aqueous extract (TPAE) on hypoxia/reoxygenation (H/R) induced injury in H9c2 cardiomyocytes and explored the underlying mechanisms. H9c2 cells were cultured under the hypoxia condition induced by sodium hydrosulfite for 30 min and reoxygenated for 4 h. Cell viability was measured by MTT assay. The amounts of LDH, NO, eNOS, and iNOS were tested by ELISA kits. Apoptotic rate was detected by Annexin V-FITC/PI staining. QRT-PCR was performed to analyze the relative mRNA expression of Akt, Bcl-2, Bax, eNOS, and iNOS. Western blotting was used to detect the expression of key members in the PI3K/Akt pathway. Results showed that the pretreatment of TPAE remarkably enhanced cell viability and decreased apoptosis induced by H/R. Moreover, TPAE decreased the release of LDH and expression of iNOS. In addition, TPAE increased NO production and Bcl-2/Bax ratio. Furthermore, the mRNA and protein expression of p-Akt and eNOS were activated by TPAE pretreatment. On the contrary, a specific inhibitor of PI3K, LY294002 not only inhibited TPAE-induced p-Akt/eNOS upregulation but alleviated its anti-apoptotic effects. In conclusion, results indicated that TPAE protected against H/R injury in cardiomyocytes, which consequently activated the PI3K/Akt/NO signaling pathway. Topics: Animals; Apoptosis; Cardiovascular Diseases; Cell Hypoxia; Cell Line; Cell Survival; Gene Expression Regulation; Humans; Medicine, Chinese Traditional; Myocytes, Cardiac; Nitric Oxide; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Reactive Oxygen Species; Signal Transduction; Sulfites | 2018 |
Genome wide DNA methylation profiling for epigenetic alteration in coronary artery disease patients.
The alteration in the epigenome forms an interface between the genotype and the environment. Epigenetic alteration is expected to make a significant contribution to the development of cardiovascular disease where environmental interactions play a key role in disease progression. We had previously shown that global DNA hypermethylation per se is associated with coronary artery disease (CAD) and is further accentuated by high levels of homocysteine, a thiol amino acid which is an independent risk factor for cardiovascular disease and is also a key modulator of macromolecular methylation.. We have identified 72 differentially methylated regions (DMRs) that were hypermethylated in CAD patients in the background of varying homocysteine levels. Following deep bisulfite sequencing of a few of the selected DMRs, we found significantly higher methylation in CAD cases. We get six CpG sites in three DMRs that included the intronic region of C1QL4 gene and upstream region of CCDC47 and TGFBR3 genes.. To the best of our knowledge, this is the first study to identify hypermethylated regions across the genome in patients with coronary artery disease. Further validation in different populations is necessary for this information to be used for disease risk assessment and management. Topics: Algorithms; Cardiovascular Diseases; Cell Cycle; Cell Proliferation; Coronary Artery Disease; CpG Islands; Disease Progression; DNA Methylation; Epigenesis, Genetic; Genetic Predisposition to Disease; Genome-Wide Association Study; Genome, Human; Genotype; Humans; Introns; Risk Assessment; Risk Factors; Sulfites | 2014 |