sodium-acetate--anhydrous has been researched along with Kidney-Diseases* in 2 studies
2 other study(ies) available for sodium-acetate--anhydrous and Kidney-Diseases
Article | Year |
---|---|
Acetate: A therapeutic candidate against renal disorder in a rat model of polycystic ovarian syndrome.
Various endocrinometabolic diseases, inclusively polycystic ovarian syndrome (PCOS) has been linked with increased risk of renal dysfunction with attendant cardiovascular disease (CVD) in women of reproductive age. Short chain fatty acids (SCFAs) especially acetate have been suggested as an immunometabolic modulator. However, the impact of SCFAs, particularly acetate on renal disorder in PCOS individuals is unknown. The present study therefore hypothesized that acetate would circumvent renal dysfunction in a rat model of PCOS, probably by suppressing NF-κB-dependent mechanism. Eight-week-old female Wistar rats were randomly distributed into four groups (n = 6), which received vehicle, sodium acetate (200 mg/kg), letrozole (1 mg/kg) and letrozole plus sodium acetate, respectively. The administrations were done by oral gavage once daily for a duration of 21 days. Animals with PCOS showed insulin resistance, lipid dysmetabolism, hyperandrogenism, hyperleptinemia and hypoadiponectinemia. Besides, the result also revealed increased renal malondialdehyde, lactate production, inflammatory mediators (NF-κB and TNF-α), urea and creatinine concentration. Immunohistochemical evaluation of renal tissue also demonstrated severe expression of apoptosis and inflammation with BAX/NLRP3 antibodies. However, supplementation with acetate significantly attenuated these anomalies. Collectively, the present results suggest that acetate abolishes renal dysfunction in experimentally induced PCOS animals by attenuating androgen excess, apoptosis, oxidative stress and NF-κB/NLRP3 immunoreactivity. Topics: Animals; Disease Models, Animal; Female; Insulin Resistance; Kidney Diseases; Letrozole; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Polycystic Ovary Syndrome; Rats; Rats, Wistar; Sodium Acetate | 2023 |
Comparison of enteral and parenteral methods of urine alkalinization in patients receiving high-dose methotrexate.
Purpose Hyperhydration and urinary alkalinization is implemented with all high-dose (HD)-methotrexate infusions to promote excretion and prevent precipitation of methotrexate in the renal tubules. Our institution utilized enteral alkalinizing agents (sodium bicarbonate tablets and sodium citrate/citric acid solution) to alkalinize the urine of patients receiving HD-methotrexate during a parenteral sodium bicarbonate and sodium acetate shortage. The purpose of this study is to establish the safety and efficacy of the enteral route for urine alkalinization. Methods A single-center, retrospective, cohort study was conducted comparing cycles of HD-methotrexate using enteral alkalinizing agents to parenteral sodium bicarbonate. The primary objective was to compare the time, in hours, from administration of first inpatient administered dose of alkalinizing agent to time of achieving goal urine pH. Secondary objectives evaluated total dose of sodium bicarbonate required to achieve goal urine pH, time from start of urine alkalinizing agent until time of achieving methotrexate level safe for discharge, and toxicities associated with methotrexate and the alkalinizing agents. Results A total of 118 patients were included in this study, equally divided into two cohorts based on parenteral versus enteral routes of administration. No statistical difference was determined between the two cohorts regarding time to goal urine pH (6.5 h versus 7.9 h, P = 0.051) or regarding time to methotrexate level deemed safe for discharge (63.5 h versus 62.5 h, p = 0.835). There were no significant differences in methotrexate-induced toxicities. Conclusion Our study found enteral routes of urine alkalinization to be a viable alternative to the traditional parenteral sodium bicarbonate, especially during parenteral sodium bicarbonate and acetate shortages. Topics: Antacids; Citrates; Female; Humans; Hydrogen-Ion Concentration; Kidney Diseases; Male; Methotrexate; Middle Aged; Retrospective Studies; Sodium Acetate; Sodium Bicarbonate; Sodium Citrate; Urine | 2017 |