snj-1945 has been researched along with Retinal-Degeneration* in 4 studies
4 other study(ies) available for snj-1945 and Retinal-Degeneration
Article | Year |
---|---|
Degeneration and dysfunction of retinal neurons in acute ocular hypertensive rats: involvement of calpains.
Retinal ischemic diseases primarily lead to damage of the inner retinal neurons. Electrophysiological studies also suggest impairment of the inner retinal neurons. Our recent studies with acute ocular hypertensive rats confirmed damage predominantly in the inner retinal layer along with the ganglion cell layer, changes that are ameliorated by the calpain inhibitor SNJ-1945. However, we do not know which specific neuronal cells in the inner retinal layer are damaged by calpains. Thus, the purpose of the present study was to identify specific calpain-damaged neuronal cells in the inner retina from acute ocular hypertensive rats.. Intraocular pressure was elevated to 110 mm Hg for 40 min. One hour after ocular hypertension (OH), SNJ-1945 was administrated as a single oral dose of 50 mg/kg. Retinal function was assessed by scotopic electroretinography (ERG). Histological degeneration was evaluated by hematoxylin and eosin, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end-labeling (TUNEL), and immunostaining in thin sections and flat mounts of the retina. Calpain activation was determined by proteolysis of the calpain substrate α-spectrin.. OH caused calpain activation, increased TUNEL-positive staining, decreased thickness of the inner nuclear layer (INL), and decreased amplitudes of the ERG a- and b-waves and oscillatory potentials (OPs). SNJ-1945 significantly inhibited calpain activation and the decrease in ERG values. Interestingly, the changes in the b-wave and OPs amplitudes were significantly correlated to changes in the thickness of the INL. In the inner retinal layer, the numbers of rod bipolar, cone-ON bipolar, and amacrine cells were decreased after OH. SNJ-1945 suppressed the loss of cone-ON bipolar and amacrine cells, but did not inhibit the loss of rod bipolar cells. We also observed increased glial fibrillary acid protein-positive staining in the Müller cells after OH and the treatment with SNJ-1945.. Calpains may contribute to ischemic retinal dysfunction by causing the loss of cone-ON bipolar and amacrine cells and causing the activation of Müller cells. Calpain inhibitor SNJ-1945 may be a candidate compound for treatment of retinal ischemic disease. Topics: Acute Disease; Animals; Calpain; Carbamates; Male; Ocular Hypertension; Rats; Rats, Sprague-Dawley; Retinal Degeneration; Retinal Neurons | 2014 |
A novel calpain inhibitor, ((1S)-1-((((1S)-1-Benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945), reduces murine retinal cell death in vitro and in vivo.
We examined whether ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945), a new orally available calpain inhibitor, might reduce retinal cell death in vivo and/or in vitro. Retinal cell damage was induced in vivo in mice by intravitreal injection of N-methyl-d-aspartate (NMDA), and SNJ-1945 was intraperitoneally or orally administered twice. NMDA-induced calpain activity (measured as the cleaved products of alpha-spectrin) and its substrate, p35 (a neuron-specific activator for cyclin-dependent kinase 5), in the retina were examined by immunoblotting. In RGC-5 (a rat retinal ganglion cell line) cell culture, cell damage was induced by a 4-h oxygen-glucose deprivation (OGD) treatment followed by an 18-h reoxygenation period. In mouse retinas, SNJ-1945 (30 or 100 mg/kg i.p., 100 or 200 mg/kg p.o.) significantly inhibited the cell loss in the ganglion cell layer (GCL) and the thinning of the inner plexiform layer induced by NMDA. Furthermore, the number of positive cells for terminal deoxynucleotidyl transferase dUTP nick-end labeling was significantly reduced in the GCL and the inner nuclear layer of retinas treated with SNJ-1945 compared with vehicle-treated retinas 24 h after NMDA injection. Levels of cleaved alpha-spectrin products increased and p35 decreased 6 h after NMDA injection or later, and their effects were attenuated by SNJ-1945. In vitro, SNJ-1945 (10 and 100 muM) inhibited the OGD stress-induced reduction in cell viability. In conclusion, SNJ-1945 may afford valuable neuroprotection against retinal diseases, because it was effective against retinal damage both in vitro and in vivo. Our results also indicate that calpain activation and subsequent p35 degradation may be involved in the mechanisms underlying retinal cell death. Topics: Administration, Oral; Animals; Calpain; Carbamates; Cell Line; Cell Survival; Glycoproteins; Injections, Intraperitoneal; Male; Mice; Mice, Inbred Strains; N-Methylaspartate; Retina; Retinal Degeneration; Retinal Ganglion Cells | 2010 |
Calpain inhibitor protects cells against light-induced retinal degeneration.
Calpains are activated by excessive light exposure and related to retinal degeneration. We investigated the protective effects of ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945), a calpain inhibitor, against light-induced retinal degeneration in mice. SNJ-1945 was orally administrated at doses of 100 and 200 mg/kg at 30 min before and just after light exposure. Light-induced calpain activation was evaluated by using proteolysis of α-spectrin and p35 (a neuron-specific activator for cyclin-dependent kinase 5). The effects of SNJ-1945 against light-induced retinal damage were examined by the thickness of the outer nuclear layer (ONL). Photoreceptor apoptosis was assessed by counting terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells in ONL. Retinal functions were measured in terms of a- and b-wave amplitudes by using an electroretinogram. As the mechanism of SNJ-1945, caspase-3/7 measurement was carried out. SNJ-1945 inhibited the proteolysis of α-spectrin and p35 by light exposure and presented a decrease in the numbers of TUNEL-positive cells and ONL atrophy. Furthermore, SNJ-1945 presented a decrease in a- and b-wave amplitude and caspase-3/7 activation induced by light exposure. These findings suggest that the activation of calpain plays a pivotal role in photoreceptor degeneration by light exposure, and SNJ-1945 may be a candidate for effectively treating diseases related to photoreceptor degeneration. Topics: Animals; Apoptosis; Calpain; Carbamates; Caspase 3; Caspase 7; Electroretinography; Light; Male; Mice; Mice, Inbred Strains; Phosphotransferases; Photoreceptor Cells; Retina; Retinal Degeneration; Spectrin | 2010 |
Amelioration of retinal degeneration and proteolysis in acute ocular hypertensive rats by calpain inhibitor ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester.
Our recent study suggested involvement of calpain-induced proteolysis in retinal degeneration and dysfunction in acute ocular hypertensive rats. The purpose of the present study was to determine if an orally available form of calpain inhibitor, ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945), ameliorated retinal degeneration induced by acute hypertension in rats. To help extrapolate the effect of SNJ-1945 from the rat model to the human glaucomatous patient, in vitro inhibition of calpain-induced proteolysis by SNJ-1945 in monkey and human retinal proteins was compared with proteolysis in rat proteins.. Intraocular pressure (IOP) in rats was elevated to 110 mm Hg for 50 min. SNJ-1945 was administrated i.p. or orally before ocular hypertension. Retinal degeneration was evaluated by hematoxylin and eosin (H&E) staining and cell counting. Transcripts for calpains and calpastatin in rat, monkey, and human retinas were measured by quantitative RT-PCR. Calpain activities were determined by casein zymography. Soluble retinal proteins from rat, monkey, and humans were incubated with calcium to activate calpains, with or without SNJ-1945. Proteolysis of calpain substrate alpha-spectrin was analyzed by immunoblotting.. Elevated IOP caused retinal degeneration and proteolysis of alpha-spectrin. Both i.p. and oral administration of SNJ-1945 inhibited proteolysis of alpha-spectrin and ameliorated retinal degeneration. Transcript levels for calpain 1 and calpastatin were similar in rat, monkey, and human retinas. Calpain 2 transcript levels were higher in rats compared with monkey and human. Appreciable caseinolytic activities due to calpains were observed in monkey and human retinas. Incubation of retinal soluble proteins with calcium led to proteolysis of alpha-spectrin due to calpains in rat, monkey, and human samples. SNJ-1945 similarly inhibited proteolysis in all species.. Our results suggested that orally available calpain inhibitor SNJ-1945 might be a possible candidate drug for testing in preventing progression of glaucomatous retinal degeneration. Topics: Animals; Calcium-Binding Proteins; Calpain; Carbamates; Disease Models, Animal; Drug Administration Routes; Glycoproteins; Haplorhini; Humans; Intraocular Pressure; Ocular Hypertension; Rats; Rats, Sprague-Dawley; Retinal Degeneration; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Staining and Labeling; Time Factors | 2006 |