sm-7368 has been researched along with Inflammation* in 2 studies
2 other study(ies) available for sm-7368 and Inflammation
Article | Year |
---|---|
Regulation of a disintegrins and metalloproteinase with thrombospondin motifs 7 during inflammation in nucleus pulposus (NP) cells: role of AP-1, Sp1 and NF-κB signaling.
The objective of this study is to explore the effect of inflammatory cytokines on a disintegrins and metalloproteinase with thrombospondin motifs 7 (ADAMTS7) and to demonstrate the role of Sp1, AP-1 and NF-κB signaling on the ADAMTS7 regulation during inflammation in NP cells.. Real-time PCR was to detect the effect of ADAMTS7 knockdown on the expression of catabolic enzymes during inflammatory condition in NP cells. Real-time PCR, western blot, immunofluorescence and transfection experiments were used to observe the effect of tumor necrosis factor-α (TNF-α) or interleukin-1β on the expression and the activity of ADAMTS7, and demonstrated the role to Sp1, AP-1 and NF-κB in the regulation of ADAMTS7 during inflammation.. As other cells, ADAMTS7 knockdown suppressed the mRNA expression of catabolic factors during inflammation in human NP cells. However, the expression of ADAMTS7 mRNA and protein and the activity of ADAMTS7 promoter were refractory to inflammatory cytokines. In addition, Sp1, AP-1, not NF-κB signaling sustained the expression of ADAMTS7 mRNA, protein, as well as promoter activity during inflammation in NP cells.. ADAMTS7 played a crucial role in the expression of catabolic genes in the presence of TNF-α and AP-1, Sp1, not NF-κB signaling were critical for the maintenance of ADAMTS7 expression during inflammation in NP cells. Topics: Abietanes; ADAMTS7 Protein; Animals; Benzamides; HEK293 Cells; Humans; Inflammation; NF-kappa B; Nucleus Pulposus; Rats; Sp1 Transcription Factor; Thiazoles; Transcription Factor AP-1 | 2016 |
Innate immune signaling induces expression and shedding of the heparan sulfate proteoglycan syndecan-4 in cardiac fibroblasts and myocytes, affecting inflammation in the pressure-overloaded heart.
Sustained pressure overload induces heart failure, the main cause of mortality in the Western world. Increased understanding of the underlying molecular mechanisms is essential to improve heart failure treatment. Despite important functions in other tissues, cardiac proteoglycans have received little attention. Syndecan-4, a transmembrane heparan sulfate proteoglycan, is essential for pathological remodeling, and we here investigated its expression and shedding during heart failure. Pressure overload induced by aortic banding for 24 h and 1 week in mice increased syndecan-4 mRNA, which correlated with mRNA of inflammatory cytokines. In cardiac myocytes and fibroblasts, tumor necrosis factor-α, interleukin-1β and lipopolysaccharide through the toll-like receptor-4, induced syndecan-4 mRNA. Bioinformatical and mutational analyses in HEK293 cells identified a functional site for the proinflammatory nuclear factor-κB transcription factor in the syndecan-4 promoter, and nuclear factor-κB regulated syndecan-4 mRNA in cardiac cells. Interestingly, tumor necrosis factor-α, interleukin-1β and lipopolysaccharide induced nuclear factor-κB-dependent shedding of the syndecan-4 ectodomain from cardiac cells. Overexpression of syndecan-4 with mutated enzyme-interacting domains suggested enzyme-dependent heparan sulfate chains to regulate shedding. In cardiac fibroblasts, lipopolysaccharide reduced focal adhesion assembly, shown by immunohistochemistry, suggesting that inflammation-induced shedding affects function. After aortic banding, a time-dependent cardiac recruitment of T lymphocytes was observed by measuring CD3, CD4 and CD8 mRNA, which was reduced in syndecan-4 knockout hearts. Finally, syndecan-4 mRNA and shedding were upregulated in failing human hearts. Conclusively, our data suggest that syndecan-4 plays an important role in the immune response of the heart to increased pressure, influencing cardiac remodeling and failure progression. Topics: Adult; Animals; Animals, Newborn; Benzamides; Cell Adhesion; Extracellular Matrix; Female; Fibroblasts; Focal Adhesions; Heart Failure; HEK293 Cells; Humans; Immunity, Innate; Inflammation; Interleukin-1beta; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Middle Aged; Myocardium; Myocytes, Cardiac; NF-kappa B; Primary Cell Culture; Rats; Rats, Wistar; RNA, Messenger; Syndecan-4; T-Lymphocytes; Thiazoles; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha; Ventricular Remodeling | 2013 |