sm-19712 and Disease-Models--Animal

sm-19712 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for sm-19712 and Disease-Models--Animal

ArticleYear
Effects of the endothelin-converting enzyme inhibitor SM-19712 in a mouse model of dextran sodium sulfate-induced colitis.
    Inflammatory bowel diseases, 2009, Volume: 15, Issue:7

    Ingestion by mice of dextran sodium sulfate (DSS) induces colonic vasoconstriction and inflammation, with some of the effects potentially mediated by the vasoconstrictor endothelin-1 (ET-1).. In this study, mice given 5% 40 kD DSS for 5-6 days had elevated colonic immunostaining for ET-1 and platelet endothelial cell adhesion molecule-1 (PECAM-1). Increased ET-1 can induce microvascular constriction; however, the increase in PECAM-1 is consistent with angiogenesis that could decrease flow resistance.. Our measurements of intestinal blood flow, via infused microspheres, suggests that these 2 factors may offset each other, with only a nonsignificant tendency for a DSS-induced decrease in flow. Daily administration of the endothelin converting enzyme inhibitor SM-19712 (15 mg/kg) attenuated DSS-induced increases in colonic immunostaining of ET-1 and PECAM-1.. SM-19712 attenuated histologic signs of tissue injury and inflammation induced by DSS, and decreased the extent of loose stools and fecal blood. However, the inhibitor did not significantly decrease DSS-induced colon shortening or tissue levels of myeloperoxidase (an indicator of neutrophil infiltration).

    Topics: Animals; Aspartic Acid Endopeptidases; Blood Pressure; Body Weight; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Endothelin-1; Endothelin-Converting Enzymes; Enzyme Inhibitors; Ileum; Metalloendopeptidases; Mice; Mice, Inbred C57BL; Organ Size; Peroxidase; Platelet Endothelial Cell Adhesion Molecule-1; Sulfonamides; Sulfonylurea Compounds; Vasoconstriction

2009
Pharmacological characterization of a novel sulfonylureid-pyrazole derivative, SM-19712, a potent nonpeptidic inhibitor of endothelin converting enzyme.
    Japanese journal of pharmacology, 2000, Volume: 84, Issue:1

    We describe the pharmacological characteristics of SM-19712 (4-chloro-N-[[(4-cyano-3-methyl-1-phenyl-1H-pyrazol-5-yl)amino]carbonyl] benzenesulfonamide, monosodium salt). SM-19712 inhibited endothelin converting enzyme (ECE) solubilized from rat lung microsomes with an IC50 value of 42 nM and, at 10 - 100 microM, had no effect on other metalloproteases such as neutral endopeptidase 24.11 and angiotensin converting enzyme, showing a high specificity for ECE. In cultured porcine aortic endothelial cells, SM-19712 at 1 - 100 microM concentration-dependently inhibited the endogenous conversion of big endothelin-1 (ET-1) to ET-1 with an IC50 value of 31 microM. In anesthetized rats, either intravenous (1-30 mg/kg) or oral (10-30 mg/kg) administration of SM-19712 dose-dependently suppressed the pressor responses induced by big ET-1. In acute myocardial infarction of rabbits subjected to coronary occlusion and reperfusion, SM-19712 reduced the infarct size, the increase in serum concentration of ET-1 and the serum activity of creatinine phosphokinase. The present study demonstrates that SM-19712 is a structurally novel, nonpeptide, potent and selective inhibitor of ECE, and SM-19712 is a valuable new tool for elucidating the pathophysiological role of ECE.

    Topics: Acute Disease; Animals; Aspartic Acid Endopeptidases; Disease Models, Animal; Endothelin-1; Endothelin-Converting Enzymes; Enzyme Inhibitors; Glycopeptides; Lung; Male; Metalloendopeptidases; Myocardial Infarction; Pressoreceptors; Rabbits; Rats; Rats, Sprague-Dawley; Substrate Specificity; Sulfonamides; Sulfonylurea Compounds; Swine

2000