slv-319 and Obesity
slv-319 has been researched along with Obesity* in 6 studies
Reviews
1 review(s) available for slv-319 and Obesity
Article | Year |
---|---|
Peripherally restricted CB1 receptor blockers.
Antagonists (inverse agonists) of the cannabinoid-1 (CB1) receptor showed promise as new therapies for controlling obesity and related metabolic function/liver disease. These agents, representing diverse chemical series, shared the property of brain penetration due to the initial belief that therapeutic benefit was mainly based on brain receptor interaction. However, undesirable CNS-based side effects of the only marketed agent in this class, rimonabant, led to its removal, and termination of the development of other clinical candidates soon followed. Re-evaluation of this approach has focused on neutral or peripherally restricted (PR) antagonists. Supporting these strategies, pharmacological evidence indicates most if not all of the properties of globally acting agents may be captured by molecules with little brain presence. Methodology that can be used to eliminate BBB penetration and the means (in vitro assays, tissue distribution and receptor occupancy determinations, behavioral paradigms) to identify potential agents with little brain presence is discussed. Focus will be on the pharmacology supporting the contention that reported agents are truly peripherally restricted. Notable examples of these types of compounds are: TM38837 (structure not disclosed); AM6545 (8); JD5037 (15b); RTI-12 (19). Topics: Animals; Brain; Cocaine; Drug Discovery; Humans; Liver Diseases; Metabolic Diseases; Morpholines; Obesity; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant; Sulfonamides | 2013 |
Other Studies
5 other study(ies) available for slv-319 and Obesity
Article | Year |
---|---|
Mitochondrial ADP/ATP exchange inhibition: a novel off-target mechanism underlying ibipinabant-induced myotoxicity.
Cannabinoid receptor 1 (CB1R) antagonists appear to be promising drugs for the treatment of obesity, however, serious side effects have hampered their clinical application. Rimonabant, the first in class CB1R antagonist, was withdrawn from the market because of psychiatric side effects. This has led to the search for more peripherally restricted CB1R antagonists, one of which is ibipinabant. However, this 3,4-diarylpyrazoline derivative showed muscle toxicity in a pre-clinical dog study with mitochondrial dysfunction. Here, we studied the molecular mechanism by which ibipinabant induces mitochondrial toxicity. We observed a strong cytotoxic potency of ibipinabant in C2C12 myoblasts. Functional characterization of mitochondria revealed increased cellular reactive oxygen species generation and a decreased ATP production capacity, without effects on the catalytic activities of mitochondrial enzyme complexes I-V or the complex specific-driven oxygen consumption. Using in silico off-target prediction modelling, combined with in vitro validation in isolated mitochondria and mitoplasts, we identified adenine nucleotide translocase (ANT)-dependent mitochondrial ADP/ATP exchange as a novel molecular mechanism underlying ibipinabant-induced toxicity. Minor structural modification of ibipinabant could abolish ANT inhibition leading to a decreased cytotoxic potency, as observed with the ibipinabant derivative CB23. Our results will be instrumental in the development of new types of safer CB1R antagonists. Topics: Adenosine Diphosphate; Adenosine Triphosphate; Amidines; Animals; Anti-Obesity Agents; Cannabinoid Receptor Antagonists; Cell Line; Dogs; Dose-Response Relationship, Drug; Drug Design; Electron Transport Chain Complex Proteins; Humans; Mice; Mitochondria; Mitochondrial ADP, ATP Translocases; Muscle, Skeletal; Myoblasts; Obesity; Oxygen Consumption; Pyrazoles; Reactive Oxygen Species; Receptor, Cannabinoid, CB1; Structure-Activity Relationship | 2015 |
Characterization of a novel and selective CB1 antagonist as a radioligand for receptor occupancy studies.
Obesity remains a significant public health issue leading to Type II diabetes and cardiovascular disease. CB1 antagonists have been shown to suppress appetite and reduce body weight in animal models as well as in humans. Evaluation of pre-clinical CB1 antagonists to establish relationships between in vitro affinity and in vivo efficacy parameters are enhanced by ex vivo receptor occupancy data. Synthesis and biological evaluation of a novel and highly selective radiolabeled CB1 antagonist is described. The radioligand was used to conduct ex vivo receptor occupancy studies. Topics: Animals; Anti-Obesity Agents; Brain; Humans; Obesity; Radiography; Radioligand Assay; Rats; Receptor, Cannabinoid, CB1 | 2011 |
Discovery and functional evaluation of diverse novel human CB(1) receptor ligands.
Ligand-based virtual screening with a 3D pharmacophore led to the discovery of 30 novel, diverse and drug-like ligands of the human cannabinoid receptor 1 (hCB(1)). The pharmacophore was validated with a hit rate of 16%, binding selectivity versus hCB(2), and expected functional profiles. The discovered compounds provide new tools for exploring cannabinoid pharmacology. Topics: Animals; Cannabinoids; Cannabis; Chemistry, Pharmaceutical; Dose-Response Relationship, Drug; Drug Design; Drug Evaluation, Preclinical; Humans; Ligands; Mice; Models, Chemical; Molecular Structure; Obesity; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant | 2009 |
Benzodioxoles: novel cannabinoid-1 receptor inverse agonists for the treatment of obesity.
The application of the evolutionary fragment-based de novo design tool TOPology Assigning System (TOPAS), starting from a known CB1R (CB-1 receptor) ligand, followed by further refinement principles, including pharmacophore compliance, chemical tractability, and drug likeness, allowed the identification of benzodioxoles as a novel CB1R inverse agonist series. Extensive multidimensional optimization was rewarded by the identification of promising lead compounds, showing in vivo activity. These compounds reversed the CP-55940-induced hypothermia in Naval Medical Research Institute (NMRI) mice and reduced body-weight gain, as well as fat mass, in diet-induced obese Sprague-Dawley rats. Herein, we disclose the tools and strategies that were employed for rapid hit identification, synthesis and generation of structure-activity relationships, ultimately leading to the identification of (+)-[( R)-2-(2,4-dichloride-phenyl)-6-fluoro-2-(4-fluoro-phenyl)-benzo[1,3]dioxol-5-yl]-morpholin-4-yl-methanone ( R)-14g . Biochemical, pharmacokinetic, and pharmacodynamic characteristics of ( R)-14g are discussed. Topics: Animals; Anti-Obesity Agents; Benzodioxoles; Body Weight; Crystallography, X-Ray; Cyclohexanols; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Design; Humans; Hypothermia; Ligands; Male; Mice; Microsomes; Models, Molecular; Molecular Structure; Obesity; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Structure-Activity Relationship | 2008 |
Discovery of N-[(1S,2S)-3-(4-Chlorophenyl)-2- (3-cyanophenyl)-1-methylpropyl]-2-methyl-2- {[5-(trifluoromethyl)pyridin-2-yl]oxy}propanamide (MK-0364), a novel, acyclic cannabinoid-1 receptor inverse agonist for the treatment of obesity.
The discovery of novel acyclic amide cannabinoid-1 receptor inverse agonists is described. They are potent, selective, orally bioavailable, and active in rodent models of food intake and body weight reduction. A major focus of the optimization process was to increase in vivo efficacy and to reduce the potential for formation of reactive metabolites. These efforts led to the identification of compound 48 for development as a clinical candidate for the treatment of obesity. Topics: Animals; Anti-Obesity Agents; Body Weight; Cannabinoids; Cyclic AMP; Eating; Humans; Liver; Microsomes; Obesity; Rats; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2006 |