Page last updated: 2024-09-03

sk&f 86466 and Disease Models, Animal

sk&f 86466 has been researched along with Disease Models, Animal in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (20.00)18.2507
2000's1 (20.00)29.6817
2010's2 (40.00)24.3611
2020's1 (20.00)2.80

Authors

AuthorsStudies
Braisted, J; Dranchak, P; Earnest, TW; Gu, X; Hoon, MA; Inglese, J; Oliphant, E; Solinski, HJ1
Abrams, RPM; Bachani, M; Balasubramanian, A; Brimacombe, K; Dorjsuren, D; Eastman, RT; Hall, MD; Jadhav, A; Lee, MH; Li, W; Malik, N; Nath, A; Padmanabhan, R; Simeonov, A; Steiner, JP; Teramoto, T; Yasgar, A; Zakharov, AV1
Hashimoto, M; Ono, H; Tanabe, M1
Boon, P; Carrette, E; Clinckers, R; De Herdt, V; El Tahry, R; Meurs, A; Michotte, Y; Mollet, L; Raedt, R; Smolders, I; Vonck, K; Wadman, W; Wyckhuys, T1
Dreshaj, I; Ernsberger, P; Haxhiu, MA; Schäfer, SG1

Other Studies

5 other study(ies) available for sk&f 86466 and Disease Models, Animal

ArticleYear
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
    Science translational medicine, 2019, 07-10, Volume: 11, Issue:500

    Topics: Animals; Behavior, Animal; Cell-Free System; Dermatitis, Contact; Disease Models, Animal; Ganglia, Spinal; Humans; Mice, Inbred C57BL; Mice, Knockout; Neurons; Pruritus; Receptors, Atrial Natriuretic Factor; Reproducibility of Results; Signal Transduction; Small Molecule Libraries

2019
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Imidazoline I(1) receptor-mediated reduction of muscle rigidity in the reserpine-treated murine model of Parkinson's disease.
    European journal of pharmacology, 2008, Jul-28, Volume: 589, Issue:1-3

    Topics: Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Animals; Antiparkinson Agents; Benzazepines; Benzofurans; Clonidine; Disease Models, Animal; Dose-Response Relationship, Drug; Electromyography; Idazoxan; Imidazoles; Imidazoline Receptors; Injections, Intraperitoneal; Ligands; Male; Mice; Muscle Rigidity; Muscle, Skeletal; Parkinsonian Disorders; Reserpine; Time Factors; Yohimbine

2008
Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model.
    Journal of neurochemistry, 2011, Volume: 117, Issue:3

    Topics: Adrenergic alpha-Antagonists; Animals; Benzazepines; Disease Models, Animal; Electroencephalography; Hippocampus; Male; Microdialysis; Muscarinic Agonists; Norepinephrine; Pilocarpine; Rats; Rats, Wistar; Seizures; Statistics as Topic; Vagus Nerve Stimulation; Video Recording

2011
Selective antihypertensive action of moxonidine is mediated mainly by I1-imidazoline receptors in the rostral ventrolateral medulla.
    Journal of cardiovascular pharmacology, 1994, Volume: 24 Suppl 1

    Topics: Adrenergic alpha-Antagonists; Affinity Labels; Animals; Antihypertensive Agents; Benzazepines; Benzofurans; Binding, Competitive; Blood Gas Analysis; Blood Pressure; Blood Pressure Determination; Cattle; Clonidine; Disease Models, Animal; Heart Rate; Hypertension; Imidazoles; Imidazoline Receptors; In Vitro Techniques; Medulla Oblongata; Microinjections; Radioligand Assay; Rats; Rats, Inbred SHR; Receptors, Drug

1994