sitagliptin-phosphate has been researched along with Testicular-Diseases* in 2 studies
2 other study(ies) available for sitagliptin-phosphate and Testicular-Diseases
Article | Year |
---|---|
Activation of autophagy by sitagliptin attenuates cadmium-induced testicular impairment in rats: Targeting AMPK/mTOR and Nrf2/HO-1 pathways.
Cadmium (Cd) is a prevalent environmental contaminant that incurs deleterious health effects, including testicular impairment. Sitagliptin, a selective dipeptidyl peptidase-4 (DPP-4) inhibitor, has demonstrated marked cardio-, hepato-, and reno-protective actions, however, its impact on Cd-triggered testicular dysfunction has not been formerly investigated. Hence, the present study aimed to explore the probable beneficial impact of sitagliptin against Cd-evoked testicular impairment which may add to its potential clinical utility. The underlying mechanisms pertaining to the balance between testicular autophagy and apoptosis were explored, including the AMPK/mTOR and Nrf2/HO-1 pathways.. The testicular tissues were examined using histopathology, immunohistochemistry, Western blotting, and ELISA. Sitagliptin (10 mg/kg/day, by gavage) was administered for 4 consecutive weeks.. Sitagliptin attenuated the testicular impairment via improvement of the relative testicular weight, sperm count/motility, sperm abnormalities, and serum testosterone. Additionally, sitagliptin counteracted Cd-induced histologic aberrations/disrupted spermatogenesis. Interestingly, sitagliptin augmented the defective autophagy as demonstrated by upregulating Beclin 1 protein expression and lowering p62 SQSTM1 protein accumulation. These effects were mediated via the activation of testicular AMPK/mTOR pathway as proven by increasing p-AMPK (Ser485, Ser491)/total AMPK and diminishing p-mTOR (Ser2448)/total mTOR protein expression. Additionally, sitagliptin suppressed the testicular apoptotic events via downregulating Bax and upregulating Bcl-2 protein expression. In tandem, sitagliptin suppressed the oxidative stress through lowering lipid peroxides and activating Nrf2/HO-1 pathway via upregulating the protein expression of Nrf2, and the downstream effectors HO-1 and GPx.. Sitagliptin attenuated Cd-induced testicular injury via boosting the autophagy/apoptosis ratio through activation of AMPK/mTOR and Nrf2/HO-1 pathways. Topics: AMP-Activated Protein Kinases; Animals; Autophagy; Cadmium; Gene Expression Regulation; Heme Oxygenase (Decyclizing); Hypoglycemic Agents; Male; NF-E2-Related Factor 2; Oxidative Stress; Rats; Rats, Sprague-Dawley; Sitagliptin Phosphate; Testicular Diseases; Testis; TOR Serine-Threonine Kinases | 2021 |
Sitagliptin protects male albino rats with testicular ischaemia/reperfusion damage: Modulation of VCAM-1 and VEGF-A.
Twisting of the spermatic cord is considered a popular problem in the urological field, which may lead to testicular necrosis and male infertility. Sitagliptin, a glucose-lowering agent, proved to have a vindicatory function in myocardial and renal ischaemia/reperfusion (I/R), but its role in testicular I/R has not yet been studied. The current work investigates its capability to recover the testicular I/R injury with shedding more light on the mechanism of its action. Four groups were used: sham, sham pretreated with sitagliptin, I/R and sitagliptin/I/R-pretreated groups. The outcomes proved that I/R significantly decreased the serum testosterone, with a major increase in oxidative, inflammatory and nitrosative stress, along with a reduction in testicular vascular endothelial growth factor-A level with marked germinal cell apoptosis. However, pretreatment with sitagliptin significantly reversed the profound testicular I/R damaging effects, on the basis of its antioxidant, anti-inflammatory and anti-apoptotic activities with the ability of recuperation of the testicular vascularity. Topics: Animals; Cholesterol; Dipeptidyl-Peptidase IV Inhibitors; Drug Evaluation, Preclinical; Male; Oxidative Stress; Rats; Reperfusion Injury; Sitagliptin Phosphate; Spermatogenesis; Testicular Diseases; Testis; Testosterone; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1; Vascular Endothelial Growth Factor A | 2020 |