sitagliptin-phosphate and Liver-Cirrhosis

sitagliptin-phosphate has been researched along with Liver-Cirrhosis* in 6 studies

Other Studies

6 other study(ies) available for sitagliptin-phosphate and Liver-Cirrhosis

ArticleYear
Sitagliptin Is More Effective Than Gliclazide in Preventing  Pro-Fibrotic and Pro-Inflammatory Changes in a Rodent Model of Diet-Induced Non-Alcoholic Fatty Liver Disease.
    Molecules (Basel, Switzerland), 2022, Jan-22, Volume: 27, Issue:3

    A diet-induced non-alcoholic fatty liver disease (NAFLD) model causing obesity in rodents was used to examine whether sitagliptin and gliclazide therapies have similar protective effects on pathological liver change.. Male mice were fed a high-fat diet (HFD) or standard chow (Chow) ad libitum for 25 weeks and randomly allocated to oral sitagliptin or gliclazide treatment for the final 10 weeks. Fasting blood glucose and circulating insulin were measured. Inflammatory and fibrotic liver markers were assessed by qPCR. The second messenger ERK and autophagy markers were examined by Western immunoblot. F4/80, collagens and CCN2 were assessed by immunohistochemistry (IHC).. At termination, HFD mice were obese, hyperinsulinemic and insulin-resistant but non-diabetic. The DPP4 inhibitor sitagliptin prevented intrahepatic induction of pro-fibrotic markers collagen-IV, collagen-VI, CCN2 and TGF-β1 and pro-inflammatory markers TNF-α and IL-1β more effectively than sulfonylurea gliclazide. By IHC, liver collagen-VI and CCN2 induction by HFD were inhibited only by sitagliptin. Sitagliptin had a greater ability than gliclazide to normalise ERK-protein liver dysregulation.. These data indicate that sitagliptin, compared with gliclazide, exhibits greater inhibition of pro-fibrotic and pro-inflammatory changes in an HFD-induced NAFLD model. Sitagliptin therapy, even in the absence of diabetes, may have specific benefits in diet-induced NAFLD.

    Topics: Animals; Diet, High-Fat; Gliclazide; Hypoglycemic Agents; Inflammation; Liver Cirrhosis; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Sitagliptin Phosphate

2022
Efficacy of Sitagliptin on Nonalcoholic Fatty Liver Disease in High-fat-diet-fed Diabetic Mice.
    Current medical science, 2022, Volume: 42, Issue:3

    Nonalcoholic fatty liver disease (NAFLD) is a common cause of clinical liver dysfunction and an important prepathological change of liver cirrhosis. Central obesity, type 2 diabetes mellitus, dyslipidemia, and metabolic syndrome are the major risk factors for NAFLD. Sitagliptin (Sig) is a novel hypoglycemic agent that improves blood glucose levels by increasing the level of active incretin. Sig has been shown to prevent the development of fatty livers in mice on a fructose-rich diet. The purpose of this study was to observe the efficacy of Sig on NAFLD in type 2 diabetic mice.. The diet-induced obesity mouse model was established, and the diabetic mice were screened by an intraperitoneal glucose tolerance trial. The mice were randomly divided into four groups for 8 weeks of intervention: high-fat diet (HFD) group, Sig group, metformin (Met) group, and Sig+Met group. After the intervention, the liver function indexes as well as the blood glucose and blood lipid levels of the mice were measured. In addition, the wet weight of the liver was measured; the pathological sections of the liver tissues were stained to observe the hepatocyte fatty degeneration, inflammation, necrosis, and fibrosis; and the hepatic histological injury was recorded as the NAFLD activity score (NAS).. Compared with the normal control group, the body weight, liver weight, blood glucose level, insulin resistance (IR), blood lipid level, and transaminase level of the mice in the HFD group were significantly increased, showing typical metabolic syndrome. After treatment with Sig and/or Met, the mice gained less weight, had lower levels of blood glucose, triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and transaminase, and had improved IR compared with the HFD group. The liver pathological NASs in the Sig group (P=0.01), Met group (P=0.028), and Sig+Met group (P<0.001) were lower than those in the HFD group (P<0.05), suggesting that the use of the two drugs alone or in combination can improve the state of liver inflammation. In terms of fibrosis, there was no fibrosis in the control group but there was significant fibrosis in the HFD group (P<0.001). There was no significant difference between the drug intervention groups and the HFD group, indicating that the drug therapy (Sig and/or Met) did not significantly improve the pre-existing fibrosis.. Our experiment proved that Sig can improve NAFLD, including improvement of the serum transaminase level, hepatic pathological inflammation level, and hepatocyte adiposis, suggesting that Sig may play a role by improving glucose and lipid metabolism, reducing the body weight and liver weight, improving insulin sensitivity, and inhibiting fatty liver inflammation. Sig may be a new direction for the treatment of patients with a nonalcoholic fatty liver and diabetes, delaying the progression of NAFLD.

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Humans; Inflammation; Insulin Resistance; Liver Cirrhosis; Metabolic Syndrome; Metformin; Mice; Non-alcoholic Fatty Liver Disease; Obesity; Sitagliptin Phosphate; Transaminases

2022
DPP4 inhibitor reduces portal hypertension in cirrhotic rats by normalizing arterial hypocontractility.
    Life sciences, 2021, Nov-01, Volume: 284

    Dipeptidyl peptidase-4 inhibitor (DPP4i), a new antidiabetic agent, is reported to affect the progression of chronic liver diseases. The study aims to investigate the effects of DPP4i on contractile response, splanchnic hemodynamics, and portal pressure in cirrhotic rats.. A rat model of carbon tetrachloride-induced cirrhosis was used in this study. Sixteen rats with cirrhosis were treated with DDP4i sitagliptin for 5 consecutive days. Portal and systemic pressures and portal blood flow were measured. Mesenteric arterioles were isolated, and concentration-response curves to norepinephrine (NE) were evaluated. The expression of NADPH oxidase (Nox)1, Nox2, Nox4, and soluble epoxide hydrolase (sEH) were detected. Reactive oxygen species (ROS) and epoxyeicosatrienoic acid (EET) levels in mesenteric arteries were also measured.. In cirrhotic rats, sitagliptin significantly reduced portal blood flow and portal pressure without effects on systemic pressure and reversed the decreased response of mesenteric arterioles to NE in an endothelium-dependent manner. Sitagliptin suppressed the increased Nox4 expression and ROS production. In vitro studies showed that Nox4 inhibitor enhanced arteriolar response to NE and reduced hydrogen peroxide (H. DPP4 inhibition by sitagliptin in vivo has beneficial effects on portal hypertension in cirrhotic rats through normalizing arterial hypocontractility. DDP4 inhibitor may be a novel strategy in the treatment of patients with cirrhosis and portal hypertension.

    Topics: Animals; Arteries; Dipeptidyl-Peptidase IV Inhibitors; Hemodynamics; Hydrogen Peroxide; Hypertension, Portal; Liver; Liver Cirrhosis; Male; Mesenteric Arteries; NADPH Oxidase 4; Norepinephrine; Rats, Sprague-Dawley; Sitagliptin Phosphate; Up-Regulation; Vasoconstriction

2021
Bullous Pemphigoid Associated with the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin in a Patient with Liver Cirrhosis Complicated with Rapidly Progressive Hepatocellular Carcinoma.
    Internal medicine (Tokyo, Japan), 2017, Sep-15, Volume: 56, Issue:18

    A 78-year-old man presented with cutaneous blisters of the limbs and abdominal distension. He had been treated for various diseases, including liver cirrhosis. He had begun receiving sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, for diabetes mellitus three years before the hospitalization. A skin biopsy demonstrated bullous pemphigoid. Ultrasonography (US) revealed multiple liver tumors, although he had been receiving regular US studies. We stopped sitagliptin and started insulin and corticosteroids. However, his renal dysfunction progressed, and he died 14 days after the hospitalization. We should therefore be careful of various complications, including bullous pemphigoid and progression of tumors, when using DPP-4 inhibitors.

    Topics: Aged; Carcinoma, Hepatocellular; Diabetes Mellitus; Dipeptidyl-Peptidase IV Inhibitors; Humans; Hypoglycemic Agents; Liver Cirrhosis; Liver Neoplasms; Male; Pemphigoid, Bullous; Sitagliptin Phosphate

2017
Sitagliptin attenuates methionine/choline-deficient diet-induced steatohepatitis.
    Diabetes research and clinical practice, 2014, Volume: 105, Issue:1

    Accumulating evidence suggests that inhibitors of dipeptidyl peptidase-4 (DPP-4), such as sitagliptin, may play an important role in the prevention of non-alcoholic steatohepatitis (NASH). This study was conducted to elucidate whether sitagliptin could prevent steatohepatitis by inhibiting pathways involved in hepatic steatosis, inflammation, and fibrosis.. C57BL/6 mice were fed a methionine/choline-deficient (MCD) diet with or without supplement with sitagliptin for 5 weeks. Liver and adipose tissue from mice were examined histologically and immunohistochemically to estimate the effect of sitagliptin on the development of NASH.. Supplementation with sitagliptin resulted in significant improvement of MCD diet-induced fat accumulation in the liver. In addition, sitagliptin treatment lowered fatty acid uptake, expression of VLDL receptor and hepatic triglyceride content. Sitagliptin also effectively attenuated MCD diet-induced hepatic inflammation, endoplasmic reticulum (ER) stress, and liver injury, as evidenced by reduced proinflammatory cytokine levels, ER stress markers, and TUNEL staining. Expression of CYP2E1 and 4NHE were strongly increased by the MCD diet, but this effect was successfully prevented by sitagliptin treatment. Furthermore, sitagliptin significantly decreased levels of MCD diet-induced fibrosis-associated proteins such as fibronectin and α-SMA in the liver. Inflammatory and atrophic changes of adipose tissue by MCD diet were restored by sitagliptin treatment.. Sitagliptin attenuated MCD diet-induced hepatic steatosis, inflammation, and fibrosis in mice through amelioration of mechanisms responsible for the development of NASH, including CD36 expression, NF-κB activation, ER stress, CYP2E1 expression, and lipid peroxidation. Treatment with sitagliptin may represent an effective approach for the prevention and treatment of NASH.

    Topics: Animals; Biomarkers; Blotting, Western; Choline Deficiency; Diet; Dipeptidyl-Peptidase IV Inhibitors; Endoplasmic Reticulum Stress; Fatty Liver; Immunoenzyme Techniques; Inflammation; Lipid Peroxidation; Liver Cirrhosis; Male; Methionine; Mice; Mice, Inbred C57BL; NF-kappa B; Pyrazines; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Sitagliptin Phosphate; Triazoles; Triglycerides

2014
The effectiveness of liraglutide in nonalcoholic fatty liver disease patients with type 2 diabetes mellitus compared to sitagliptin and pioglitazone.
    TheScientificWorldJournal, 2012, Volume: 2012

    BACKGROUND. Liraglutide leading to improve not only glycaemic control but also liver inflammation in non-alcoholic fatty liver disease (NAFLD) patients. AIMS. The aim of this study is to elucidate the effectiveness of liraglutide in NAFLD patients with type 2 diabetes mellitus (T2DM) compared to sitagliptin and pioglitazone. METHODS. We retrospectively enrolled 82 Japanese NAFLD patients with T2DM and divided into three groups (liraglutide: N = 26, sitagliptin; N = 36, pioglitazone; N = 20). We compared the baseline characteristics, changes of laboratory data and body weight. RESULTS. At the end of follow-up, ALT, fast blood glucose, and HbA1c level significantly improved among the three groups. AST to platelet ratio significantly decreased in liraglutide group and pioglitazone group. The body weight significantly decreased in liraglutide group (81.8 kg to 78.0 kg, P < 0.01). On the other hands, the body weight significantly increased in pioglitazone group and did not change in sitagliptin group. Multivariate regression analysis indicated that administration of liraglutide as an independent factor of body weight reduction for more than 5% (OR 9.04; 95% CI 1.12-73.1, P = 0.04). CONCLUSIONS. Administration of liraglutide improved T2DM but also improvement of liver inflammation, alteration of liver fibrosis, and reduction of body weight.

    Topics: Adult; Alanine Transaminase; Blood Glucose; Body Weight; Comorbidity; Diabetes Mellitus, Type 2; Drug Evaluation; Drug Therapy, Combination; Fatty Liver; Female; Follow-Up Studies; Glucagon-Like Peptide 1; Glycated Hemoglobin; Humans; Inflammation; Liraglutide; Liver Cirrhosis; Logistic Models; Male; Middle Aged; Multivariate Analysis; Non-alcoholic Fatty Liver Disease; Odds Ratio; Pioglitazone; Platelet Count; Pyrazines; Retrospective Studies; Sitagliptin Phosphate; Thiazolidinediones; Treatment Outcome; Triazoles

2012