sitagliptin-phosphate has been researched along with Cicatrix* in 2 studies
2 other study(ies) available for sitagliptin-phosphate and Cicatrix
Article | Year |
---|---|
The serine proteases dipeptidyl-peptidase 4 and urokinase are key molecules in human and mouse scar formation.
Despite recent advances in understanding skin scarring, mechanisms triggering hypertrophic scar formation are still poorly understood. In the present study, we investigate mature human hypertrophic scars and developing scars in mice at single cell resolution. Compared to normal skin, we find significant differences in gene expression in most cell types present in scar tissue. Fibroblasts show the most prominent alterations in gene expression, displaying a distinct fibrotic signature. By comparing genes upregulated in murine fibroblasts during scar development with genes highly expressed in mature human hypertrophic scars, we identify a group of serine proteases, tentatively involved in scar formation. Two of them, dipeptidyl-peptidase 4 (DPP4) and urokinase (PLAU), are further analyzed in functional assays, revealing a role in TGFβ1-mediated myofibroblast differentiation and over-production of components of the extracellular matrix in vitro. Topical treatment with inhibitors of DPP4 and PLAU during scar formation in vivo shows anti-fibrotic activity and improvement of scar quality, most prominently after application of the PLAU inhibitor BC-11. In this study, we delineate the genetic landscape of hypertrophic scars and present insights into mechanisms involved in hypertrophic scar formation. Our data suggest the use of serine protease inhibitors for the treatment of skin fibrosis. Topics: Animals; Cell Differentiation; Cicatrix; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Female; Gene Expression; Humans; Membrane Proteins; Mice, Inbred BALB C; Myofibroblasts; Single-Cell Analysis; Sitagliptin Phosphate; Transforming Growth Factor beta1 | 2021 |
Functional Dissection of CD26 and Its Pharmacological Inhibition by Sitagliptin During Skin Wound Healing.
BACKGROUND Skin fibroblasts are primary mediators underlying wound healing and therapeutic targets in scar prevention and treatment. CD26 is a molecular marker to distinguish fibroblast subpopulations and plays an important role in modulating the biological behaviors of dermal fibroblasts and influencing skin wound repair. Therapeutic targeting of specific fibroblast subsets is expected to reduce skin scar formation more efficiently. MATERIAL AND METHODS Skin burn and excisional wound healing models were surgically established in mice. The expression patterns of CD26 during wound healing were determined by immunohistochemical staining, real-time RT-PCR, and western blot assays. Normal fibroblasts from intact skin (NFs) and fibroblasts in wounds (WFs) were isolated and sorted by fluorescence-activated cell sorting (FACS) into 4 subgroups - CD26⁺ NFs, CD26⁻ NFs, CD26⁺ WFs, and CD26⁻ WFs - for comparisons of their capacities of proliferation, migration, and collagen synthesis. Pharmacological inhibition of CD26 by sitagliptin in skin fibroblasts and during wound healing were further assessed both in vitro and in vivo. RESULTS Increased CD26 expression was observed during skin wound healing in both models. The CD26⁺ fibroblasts isolated from wounds had significantly stronger abilities to proliferate, migrate, and synthesize collagen than other fibroblast subsets. Sitagliptin treatment potently diminished CD26 expression, impaired the proliferation, migration, and collagen synthesis of fibroblasts in vitro, and diminished scar formation in vivo. CONCLUSIONS Our data reveal that CD26 is functionally involved in skin wound healing by regulating cell proliferation, migration, and collagen synthesis in fibroblasts. Pharmacological inhibition of CD26 by sitagliptin might be a viable strategy to reduce skin scar formation. Topics: Animals; Cell Movement; Cell Proliferation; Cells, Cultured; Cicatrix; Collagen; Dipeptidyl Peptidase 4; Female; Fibroblasts; Male; Mice; Mice, Inbred C57BL; Signal Transduction; Sitagliptin Phosphate; Skin; Skin Physiological Phenomena; Wound Healing | 2021 |