sirolimus has been researched along with Uveal-Neoplasms* in 2 studies
2 other study(ies) available for sirolimus and Uveal-Neoplasms
Article | Year |
---|---|
Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target.
Uveal melanoma (UM) is the most common primary tumor of the eye in adults. There is no standard adjuvant treatment to prevent metastasis and no effective therapy in the metastatic setting. We have established a unique panel of 7 UM cell lines from either patient's tumors or patient-derived tumor xenografts (PDXs). This panel recapitulates the molecular landscape of the disease in terms of genetic alterations and mutations. All the cell lines display GNAQ or GNA11 activating mutations, and importantly four of them display BAP1 (BRCA1 associated protein-1) deficiency, a hallmark of aggressive disease. The mTOR pathway was shown to be activated in most of the cell lines independent of AKT signaling. mTOR inhibitor Everolimus reduced the viability of UM cell lines and significantly delayed tumor growth in 4 PDXs. Our data suggest that mTOR inhibition with Everolimus, possibly in combination with other agents, may be considered as a therapeutic option for the management of uveal melanoma. Topics: Animals; Antineoplastic Agents; Blotting, Western; Cell Line, Tumor; Cell Survival; Everolimus; Female; Humans; Melanoma; Mice; Mice, SCID; Sirolimus; TOR Serine-Threonine Kinases; Uveal Neoplasms | 2014 |
The PI3K/Akt and mTOR/P70S6K signaling pathways in human uveal melanoma cells: interaction with B-Raf/ERK.
Activated B-Raf alone cannot induce melanoma but must cooperate with other signaling pathways. The phosphatidylinositol 3-kinase (PI3K)/Akt and mammalian target of rapamycin (mTOR)/p70S6K pathways are critical for tumorigenesis. The authors investigated the role of these pathways in uveal melanoma cells.. The effects of PI3K and mTOR activation and inhibition on the proliferation of human uveal melanoma cell lines expressing either activated (WT)B-Raf or (V600E)B-Raf were investigated. Interactions among PI3K, mTOR, and B-Raf/ERK were studied.. Inhibition of PI3K deactivated P70S6 kinase, reduced cell proliferation by 71% to 84%, and increased apoptosis by a factor of 5.0 to 8.4 without reducing ERK1/2 activation, indicating that ERK plays no role in mediating PI3K in these processes. In contrast, rapamycin-induced inhibition of mTOR did not significantly affect cell proliferation because it simultaneously stimulated PI3K/Akt activation and cyclin D1 expression. Regardless of B-Raf mutation status, cotreatment with the PI3K inhibitor effectively sensitized all melanoma cell lines to the B-Raf or ERK1/2 inhibition-induced reduction of cell proliferation. B-Raf/ERK and PI3K signaling, but not mTOR signaling, converged to control cyclin D1 expression. Moreover, p70S6K required the activation of ERK1/2. These data demonstrate that PI3K/Akt and mTOR/P70S6K interact with B-Raf/ERK.. Activated PI3K/Akt attenuates the inhibitory effects of rapamycin on cell proliferation and thus serves as a negative feedback mechanism. This finding suggests that rapamycin is unlikely to inhibit uveal melanoma growth. In contrast, targeting PI3K while inhibiting B-Raf/ERK may be a promising approach to reduce the proliferation of uveal melanoma cells. Topics: Apoptosis; Blotting, Western; Cell Cycle; Cell Proliferation; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Feedback, Physiological; Humans; Intracellular Signaling Peptides and Proteins; Melanoma; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-akt; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Tumor Cells, Cultured; Uveal Neoplasms | 2010 |