sirolimus has been researched along with Triple-Negative-Breast-Neoplasms* in 23 studies
1 review(s) available for sirolimus and Triple-Negative-Breast-Neoplasms
Article | Year |
---|---|
Clinical development of mTOR inhibitors in breast cancer.
The mammalian target of rapamycin (mTOR) pathway is a central pathway that regulates mRNA translation, protein synthesis, glucose metabolism, lipid synthesis and autophagy, and is involved in malignant transformation. Several randomized trials have shown that the use of mTOR inhibitors could improve patient outcome with hormone receptor-positive or human epidermal growth factor receptor-2-positive breast cancer. This review analyzes new perspectives from these trials. Preclinical studies have suggested that the mTOR pathway may play a role in the resistance to hormone therapy, trastuzumab and chemotherapy for breast cancer. This concept has been tested in clinical trials for neoadjuvant treatment and for metastatic breast cancer patients. Also, much effort has gone into the identification of biomarkers that will allow for more precise stratification of patients. Findings from these studies will provide indispensable tools for the design of future clinical trials and identify new perspectives and challenges for researchers and clinicians. Topics: Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Everolimus; Female; Humans; Neoadjuvant Therapy; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Receptor, ErbB-2; Receptors, Estrogen; Sirolimus; TOR Serine-Threonine Kinases; Trastuzumab; Triple Negative Breast Neoplasms | 2014 |
4 trial(s) available for sirolimus and Triple-Negative-Breast-Neoplasms
Article | Year |
---|---|
Targeting the PI3K/AKT/mTOR Pathway for the Treatment of Mesenchymal Triple-Negative Breast Cancer: Evidence From a Phase 1 Trial of mTOR Inhibition in Combination With Liposomal Doxorubicin and Bevacizumab.
Triple-negative breast cancer (TNBC) classified by transcriptional profiling as the mesenchymal subtype frequently harbors aberrations in the phosphoinositide 3-kinase (PI3K) pathway, raising the possibility of targeting this pathway to enhance chemotherapy response. Up to 30% of mesenchymal TNBC can be classified histologically as metaplastic breast cancer, a chemorefractory group of tumors with a mixture of epithelial and mesenchymal components identifiable by light microscopy. While assays to identify mesenchymal TNBC are under development, metaplastic breast cancer serves as a clinically identifiable surrogate to evaluate potential regimens for mesenchymal TNBC.. To assess safety and efficacy of mammalian target of rapamycin (mTOR) inhibition in combination with liposomal doxorubicin and bevacizumab in patients with advanced metaplastic TNBC.. Phase 1 study with dose escalation and dose expansion at the University of Texas MD Anderson Cancer Center of patients with advanced metaplastic TNBC. Patients were enrolled from April 16, 2009, to November 4, 2014, and followed for outcomes with a cutoff date of November 1, 2015, for data analysis.. Liposomal doxorubicin, bevacizumab, and the mTOR inhibitors temsirolimus or everolimus using 21-day cycles.. Safety and response. When available, archived tissue was evaluated for aberrations in the PI3K pathway.. Fifty-two women with metaplastic TNBC (median age, 58 years; range, 37-79 years) were treated with liposomal doxorubicin, bevacizumab, and temsirolimus (DAT) (N = 39) or liposomal doxorubicin, bevacizumab, and everolimus (DAE) (N = 13). The objective response rate was 21% (complete response = 4 [8%]; partial response = 7 [13%]) and 10 (19%) patients had stable disease for at least 6 months, for a clinical benefit rate of 40%. Tissue was available for testing in 43 patients, and 32 (74%) had a PI3K pathway aberration. Presence of PI3K pathway aberration was associated with a significant improvement in objective response rate (31% vs 0%; P = .04) but not clinical benefit rate (44% vs 45%; P > .99).. Using metaplastic TNBC as a surrogate for mesenchymal TNBC, DAT and DAE had notable activity in mesenchymal TNBC. Objective response was limited to patients with PI3K pathway aberration. A randomized trial should be performed to test DAT and DAE for metaplastic TNBC, as well as nonmetaplastic, mesenchymal TNBC, especially when PI3K pathway aberrations are identified. Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Bevacizumab; Doxorubicin; Elafin; Everolimus; Female; Humans; Kaplan-Meier Estimate; Middle Aged; Polyethylene Glycols; Proportional Hazards Models; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms | 2017 |
Open-label randomized clinical trial of standard neoadjuvant chemotherapy with paclitaxel followed by FEC versus the combination of paclitaxel and everolimus followed by FEC in women with triple receptor-negative breast cancer†.
Everolimus synergistically enhances taxane-induced cytotoxicity in breast cancer cells in vitro and in vivo in addition to demonstrating a direct antiproliferative activity. We aim to determine pharmacodynamics changes and response of adding everolimus to standard neoadjuvant chemotherapy in triple-negative breast cancer (TNBC).. Phase II study in patients with primary TNBC randomized to T-FEC (paclitaxel 80 mg/m(2) i.v. weekly for 12 weeks, followed by 5-fluorouracil 500 mg/m(2), epirubicin 100 mg/m(2), and cyclophosphamide 500 mg/m(2) every 3 weeks for four cycles) versus TR-FEC (paclitaxel 80 mg/m(2) i.v. and everolimus 30 mg PO weekly for 12 weeks, followed by FEC). Tumor samples were collected to assess molecular changes in the PI3K/AKT/mTOR pathway, at baseline, 48 h, 12 weeks, and at surgery by reverse phase protein arrays (RPPA). Clinical end points included 12-week clinical response rate (12-week RR), pathological complete response (pCR), and toxicity.. Sixty-two patients were registered, and 50 were randomized, 27 received T-FEC, and 23 received TR-FEC. Median age was 48 (range 31-75). There was downregulation of the mTOR pathway at 48 h in the TR-FEC arm. Twelve-week RR by ultrasound were 29.6% versus 47.8%, (P = 0.075), and pCR were 25.9% versus 30.4% (P = 0.76) for T-FEC and TR-FEC, respectively. mTOR downregulation at 48 h did not correlate with 12-week RR in the TR-FEC group (P = 0.58). Main NCI grade 3/4 toxicities included anemia, neutropenia, rash/desquamation, and vomiting in both arms. There was one case of grade 3 pneumonitis in the TR-FEC arm. No grade 3/4 stomatitis occurred.. The addition of everolimus to paclitaxel was well tolerated. Everolimus downregulated mTOR signaling but downregulation of mTOR at 48 h did not correlate with 12-week RR in the TR-FEC group.. NCT00499603. Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Cyclophosphamide; Epirubicin; Everolimus; Female; Fluorouracil; Humans; Middle Aged; Neoadjuvant Therapy; Paclitaxel; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms | 2014 |
Phase 2 trial of everolimus and carboplatin combination in patients with triple negative metastatic breast cancer.
Rapamycin acts synergistically with platinum agents to induce apoptosis and inhibit proliferation in breast cancer cell lines. Combination of everolimus also known as RAD001 (oral mammalian target of rapamycin (mTOR) inhibitor) and carboplatin may have activity in metastatic triple-negative breast cancer (TNBC).. The primary objective of this study was to determine clinical benefit rate (CBR), that is (complete remission (CR) + partial remission (PR) + stable disease (SD) lasting ≥6 months) and the toxicity of everolimus/carboplatin in women with metastatic TNBC. Prior carboplatin was allowed. Treatment consisted of intravenous carboplatin area under the curve (AUC) 6 (later decreased to AUC 5 and subsequently to AUC 4) every 3 weeks with daily 5 mg everolimus.. We enrolled 25 patients in this study. Median age was 58 years. There were one CR, six PRs, seven SDs and eight PDs (progression of disease). CBR was 36% (95% confidence interval (CI) 21.1 to 57.4%). One SD was achieved in a patient progressing on single agent carboplatin. The median progression free survival (PFS) was 3 months (95% CI 1.6 to 4.6 months) and overall survival (OS) was 16.6 months (95% CI 7.3 months to not reached). There were seven patients (28%) with ≥ grade 3 thrombocytopenia; three (12%) with grade 3 neutropenia (no bleeding/febrile neutropenia) and one (4%) with grade 3 anemia. Greater hematological toxicity was seen in the first seven patients treated with carboplatin AUC5/6. After the amendment for starting dose of carboplatin to AUC 4, the regimen was well tolerated with only one out of 18 patients with grade 3 neutropenia and two patients with grade 3 thrombocytopenia. There was only one case of mucositis.. Everolimus-carboplatin was efficacious in metastatic TNBC. Dose limiting hematological toxicity was observed when AUC5/6 of carboplatin was combined with everolimus. However, carboplatin AUC 4 was well tolerated in combination with everolimus with continuing responses.. ClinicalTrials.gov NCT01127763. Topics: Anemia; Antineoplastic Combined Chemotherapy Protocols; Carboplatin; Dose-Response Relationship, Drug; Drug Administration Schedule; Everolimus; Exanthema; Fatigue; Female; Humans; Kaplan-Meier Estimate; Middle Aged; Nausea; Remission Induction; Sirolimus; Thrombocytopenia; Treatment Outcome; Triple Negative Breast Neoplasms | 2014 |
Neoadjuvant bevacizumab and anthracycline-taxane-based chemotherapy in 678 triple-negative primary breast cancers; results from the geparquinto study (GBG 44).
We evaluated the pathological complete response (pCR) rate after neoadjuvant epirubicin, (E) cyclophosphamide (C) and docetaxel containing chemotherapy with and without the addition of bevacizumab in patients with triple-negative breast cancer (TNBC).. Patients with untreated cT1c-4d TNBC represented a stratified subset of the 1948 participants of the HER2-negative part of the GeparQuinto trial. Patients were randomized to receive four cycles EC (90/600 mg/m(2); q3w) followed by four cycles docetaxel (100 mg/m(2); q3w) each with or without bevacizumab (15 mg/kg; q3w) added to chemotherapy.. TNBC patients were randomized to chemotherapy without (n = 340) or with bevacizumab (n = 323). pCR (ypT0 ypN0, primary end point) rates were 27.9% without and 39.3% with bevacizumab (P = 0.003). According to other pCR definitions, the addition of bevacizumab increased the pCR rate from 30.9% to 41.8% (ypT0 ypN0/+; P = 0.004), 36.2% to 46.4% (ypT0/is ypN0/+; P = 0.009) and 32.9% to 43.3% (ypT0/is ypN0; P = 0.007). Bevacizumab treatment [OR 1.73, 95% confidence interval (CI) 1.23-2.42; P = 0.002], lower tumor stage (OR 2.38, 95% CI 1.24-4.54; P = 0.009) and grade 3 tumors (OR 1.68, 95% CI 1.14-2.48; P = 0.009) were confirmed as independent predictors of higher pCR in multivariate logistic regression analysis.. The addition of bevacizumab to chemotherapy in TNBC significantly increases pCR rates. Topics: Adult; Aged; Anthracyclines; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Bevacizumab; Carcinoma, Ductal, Breast; Chemotherapy, Adjuvant; Cyclophosphamide; Epirubicin; Everolimus; Female; Humans; Middle Aged; Multivariate Analysis; Neoadjuvant Therapy; Paclitaxel; Sirolimus; Treatment Outcome; Triple Negative Breast Neoplasms; Tumor Burden; Ultrasonography; Young Adult | 2013 |
18 other study(ies) available for sirolimus and Triple-Negative-Breast-Neoplasms
Article | Year |
---|---|
MicroRNA-122 Is More Effective than Rapamycin in Inhibition of Epithelial-mesenchymal Transition and mTOR Signaling Pathway in Triple Negative Breast Cancer.
The fundamental mechanism responsible for the aggressiveness of metastatic cancers such as triple-negative breast cancer (TNBC) is the epithelial-mesenchymal transition (EMT). In cancer microenvironments, the Phosphoinositide 3-kinases (PI3K)-Akt- mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in regulating the EMT mechanism. The current study focuses on the impacts of rapamycin, a newly retargeted chemotherapeutic agent against mTOR, and MicroRNA (miR)-122 on the aggressive behavior of TNBC. The half-maximal inhibitory concentration (IC50) of rapamycin on 4T1 cells was determined using an MTT assay. Also, miR-122 was transiently transfected into 4T1 cells to study its effect on the pathway. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to assess the expression level of central mTOR and EMT-related cascade genes. Moreover, cell mobility and migration were evaluated using scratch and migration assays, respectively. Both rapamycin and miR-122 significantly decreased the expression levels of PI3K, AKT, and mTOR, as well as ZeB1 and Snail genes. However, no significant change was observed in Twist gene expression. Furthermore, scratch and migration assays revealed that the migration of 4T1 cells was markedly reduced, especially following miR-122 induction. Our experimental findings and gene enrichment studies indicated that miR-122 mainly operates on multiple metabolic pathways, as well as EMT and mTOR, while rapamycin has restricted targets in cancer cells. Consequently, miR-122 can be considered a potential cancer microRNA therapy option, which can be validated in the future in animal studies to demonstrate its efficacy in cancer control. Topics: Animals; Cell Line, Tumor; Cell Movement; Cell Proliferation; Epithelial-Mesenchymal Transition; Gene Expression Regulation, Neoplastic; Humans; Mammals; MicroRNAs; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms; Tumor Microenvironment | 2023 |
Combination therapy with PD-1 inhibition plus rapamycin and metformin enhances anti-tumor efficacy in triple negative breast cancer.
Topics: AMP-Activated Protein Kinases; Animals; B7-H1 Antigen; Humans; Mice; Sirolimus; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms | 2023 |
Exosomes derived from rapamycin-treated 4T1 breast cancer cells induced polarization of macrophages to M1 phenotype.
M2 macrophages are the most prevalent type in the tumor microenvironment and their polarization to M1 type can be used as a potential cancer immunotherapy. Here, we investigated the role of tumor microenvironment and particularly purified exosomes in M2 to M1 macrophage polarization. Rapamycin treatment on triple-negative breast cancer cells (TNBC) was performed. Tumor cells-derived exosomes (called texosomes) were isolated and characterized using scanning electron microscopy, transmission electron microscopy, dynamic light scattering, high-performance liquid chromatography, Fourier transform infrared, and Western blot assays. M2 mouse peritoneal macrophages were treated with rapamycin or rapamycin-texosome. Then, M1/M2 phenotype-specific marker genes and proteins were measured to assess the degree of M2 to M1 polarization. Finally, nitric oxide (NO) production, phagocytosis, and efferocytosis assays were assessed to verify the functionality of the polarized macrophages. Purified rapamycin-texosomes significantly increased the expression of the M1 markers (Irf5, Nos2, and CD86) and decreased M2 markers (Arg, Ym1, and CD206). In addition, the levels of M1-specific cytokines tumor necrosis factor alpha and interleukin 1β (IL-1β) were increased, whereas the levels of M2 specific cytokines IL-10 and transforming growth factor beta were declined. Furthermore, texosome treatment increased NO concentration and phagocytosis and decreased efferocytosis indicating M1 polarization. These findings suggest rapamycin-texosomes can induce M2 to M1 macrophages polarization as a potential immunotherapy for TNBC. Topics: Animals; Cytokines; Exosomes; Humans; Interferon Regulatory Factors; Macrophages; Mice; Phenotype; Sirolimus; Triple Negative Breast Neoplasms; Tumor Microenvironment | 2023 |
HER3/Akt/mTOR pathway is a key therapeutic target for the reduction of triple‑negative breast cancer metastasis via the inhibition of CXCR4 expression.
Topics: Animals; Cell Line, Tumor; Cell Movement; Cell Proliferation; Everolimus; Humans; Mammals; Mice; Proto-Oncogene Proteins c-akt; Receptors, CXCR4; Sirolimus; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms | 2023 |
A systems biology approach and in vitro experiment indicated Rapamycin targets key cancer and cell cycle-related genes and miRNAs in triple-negative breast cancer cells.
An anticancer drug known as Rapamycin acts by inhibiting the mammalian target of the Rapamycin pathway. This agent has recently been investigated for its potential therapeutic benefits in sensitizing drug-resistant breast cancer (BC) treatment. The molecular mechanism underlying these effects, however, is still a mystery. Using a systems biology method and in vitro experiment, this study sought to discover essential genes and microRNAs (miRNAs) targeted by Rapamycin in triple-negative BC (TNBC) cells to aid prospective new medications with less adverse effects in BC treatment. We developed the transcription factor-miRNA-gene and protein-protein interaction networks using the freely accessible microarray data sets. FANMOD and MCODE were utilized to identify critical regulatory motifs, clusters, and seeds. Then, functional enrichment analyses were conducted. Using topological analysis and motif detection, the most important genes and miRNAs were discovered. We used quantitative real-time polymerase chain reaction (qRT-PCR) to examine the effect of Rapamycin on the expression of the selected genes and miRNAs to verify our findings. We performed flow cytometry to investigate Rapamycin's impact on cell cycle and apoptosis. Furthermore, wound healing and migration assays were done. Three downregulated (PTGS2, EGFR, VEGFA) and three upregulated (c-MYC, MAPK1, PIK3R1) genes were chosen as candidates for additional experimental verification. There were also three upregulated miRNAs (miR-92a, miR-16, miR-20a) and three downregulated miRNAs (miR-146a, miR-145, miR-27a) among the six selected miRNAs. The qRT-PCR findings in MDA-MB-231 cells indicated that c-MYC, MAPK1, PIK3R1, miR-92a, miR-16, and miR-20a expression levels were considerably elevated following Rapamycin treatment, whereas PTGS2, EGFR, VEGFA, miR-146a, and miR-145 expression levels were dramatically lowered (p < 0.05). These genes are engaged in cancer pathways, transcriptional dysregulation in cancer, and cell cycle, according to the top pathway enrichment findings. Migration and wound healing abilities of the cells declined after Rapamycin treatment, and the number of apoptotic cells increased. We demonstrated that Rapamycin suppresses cell migration and metastasis in the TNBC cell line. In addition, our data indicated that Rapamycin induces apoptosis in this cell line. The discovered vital genes and miRNAs affected by Rapamycin are anticipated to have crucial roles in the pathogenesis of TNBC and it Topics: Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cyclooxygenase 2; ErbB Receptors; Gene Expression Regulation, Neoplastic; Humans; MicroRNAs; Sirolimus; Systems Biology; Transcription Factors; Triple Negative Breast Neoplasms | 2023 |
Histone deacetylase inhibitor panobinostat in combination with rapamycin confers enhanced efficacy against triple-negative breast cancer.
Triple-negative breast cancer (TNBC) accounts for about 15% of diagnosed breast cancer patients, which has a poor survival outcome owing to a lack of effective therapies. This study aimed to explore the in vitro and in vivo efficiency of histone deacetylase (HDAC) inhibitor panobinostat (PANO) in combination with mTOR inhibitor rapamycin (RAPA) against TNBC. TNBC cells were treated with PANO, RAPA alone or the combination of drugs, then cell growth and apoptosis were evaluated by CCK-8, colony formation and flow cytometry. Cell migration and invasion were detected by wound healing assay and transwell assay, respectively. ROS production was detected by DCFH-DA staining. Western blotting was performed to detect protein levels. In vivo tumor growth was assessed in nude mice. The expression of cleaved caspase-3 and Ki-67 in tumor tissues was detected by immunofluorescence staining. H&E staining was conducted to observe the pathological changes in heart, liver, and kidney tissues. The combination of PANO and RAPA exerted a stronger role in repressing growth, migration, invasion, and inducing apoptosis of TNBC cells compared with monotherapy. Furthermore, this combination presented a more effective anti-cancer efficacy than a single treatment in the xenograft model without apparent toxic side effects. Importantly, mechanistic studies indicated that PANO and RAPA combination led to ROS overproduction, which subsequently activated endoplasmic reticulum stress. Conclusion: PANO in combination with RAPA exhibits enhanced efficacy against TNBC, which may be considered a promising therapeutic candidate. Topics: Animals; Caspase 3; Cell Line, Tumor; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Ki-67 Antigen; Mice; Mice, Nude; Panobinostat; Reactive Oxygen Species; Sincalide; Sirolimus; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms; Xenograft Model Antitumor Assays | 2022 |
Identification and optimization of 3-bromo-N'-(4-hydroxybenzylidene)-4-methylbenzohydrazide derivatives as mTOR inhibitors that induce autophagic cell death and apoptosis in triple-negative breast cancer.
Triple negative breast cancer (TNBC) has a worse prognosis than other types of breast cancer due to its special biological behavior and clinicopathological characteristics. TNBC cell proliferation and progression to metastasis can be suppressed by inducing cytostatic autophagy. mTOR is closely related to autophagy and is involved in protein synthesis, nutrient metabolism and activating mTOR promotes tumor growth and metastasis. In this paper, we adopted the strategy of structure simplification, aimed to look for novel small-molecule inhibitors of mTOR by pharmacophore-based virtual screening and biological activity determination. We found a lead compound with 3-bromo-N'-(4-hydroxybenzylidene)-4-methylbenzohydrazide for rational drug design and structural modification, then studied its structure-activity relationship. After that, compound 7c with the best TNBC cells inhibitory activities and superior mTOR enzyme inhibitory activity was obtained. In addition, we found that compound 7c could induce autophagic cell death and apoptosis in MDA-MB-231 and MDA-MB-468 cell lines. In conclusion, these findings provide new clues for our 3-bromo-N'-(4-hydroxybenzylidene)-4-methylbenzohydrazide derivatives, which are expected to become drug candidates for the treatment of TNBC in the future. Topics: Apoptosis; Autophagy; Binding Sites; Cell Line, Tumor; Cell Survival; Drug Design; Drug Evaluation, Preclinical; Drug Screening Assays, Antitumor; Humans; Hydrazines; Molecular Docking Simulation; Protein Kinase Inhibitors; Structure-Activity Relationship; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms | 2021 |
Bisdemethoxycurcumin Promotes Apoptosis and Inhibits the Epithelial-Mesenchymal Transition through the Inhibition of the G-Protein-Coupled Receptor 161/Mammalian Target of Rapamycin Signaling Pathway in Triple Negative Breast Cancer Cells.
Triple negative breast cancer (TNBC) is one of the leading causes of cancer death in the world and lacks an effective targeted therapy. G-protein-coupled receptor 161 (GPR161) has been demonstrated to perform the functional regulations on TNBC progression and might be a potential new target for TNBC therapy. This study showed the effects of bisdemethoxycurcumin (BDMC) on GPR161 regulation, indicating that BDMC effectively inhibited GPR161 expression and downregulated GPR161-driven signaling. BDMC showed the potent inhibitory effects on TNBC proliferation through suppressing GPR161-mediated mammalian target of rapamycin (mTOR)/70 kDa ribosomal protein S6 kinase (p70S6K) activation. Besides, in this study, we discover the mechanism of GPR161-driven TNBC metastasis, linking to GPR161-mediated twist-related protein 1 (Twist1)/matrix metallopeptidase 9 (MMP9) contributing to the epithelial-mesenchymal transition (EMT). BDMC effectively repressed GPR161-mediated TNBC metastasis via inhibiting Twist1/MMP9-induced EMT. The three-dimensional invasion assay also showed that BDMC significantly inhibited TNBC invasion. The combination treatment of BDMC and rapamycin enhanced the inhibition of TNBC proliferation and metastasis through increasing the blockage of mTOR activation. Furthermore, this study also observed that BDMC activated the caspase 3/9 signaling pathway to induce TNBC apoptosis. Therefore, BDMC could be applicable to anticancer therapy, especially targeting on the GPR161-driven cancer type. Topics: Apoptosis; Cell Line, Tumor; Cell Movement; Cell Proliferation; Diarylheptanoids; Epithelial-Mesenchymal Transition; Gene Expression Regulation, Neoplastic; Humans; Receptors, G-Protein-Coupled; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms | 2021 |
Rictor promotes tumor progression of rapamycin-insensitive triple-negative breast cancer cells.
Triple-negative breast cancer (TNBC), characterized by decreased expression of hormone receptors and human epidermal growth factor type 2 receptor, has poor prognosis and lacks effective therapeutics. Recently, the mTOR inhibitor rapamycin and its analogs have attracted growing interests and evaluated as therapeutic agents against TNBC, in which the PI3K/AKT/mTOR pathway is often activated. However, some TNBCs are less sensitive to these drugs. In this study, we found that the sensitivity of TNBC cells to rapamycin was highly dependent on the expression level of rapamycin-insensitive companion of mTOR (Rictor), a key component of the mTOR complex 2. Repression of the Rictor expression strongly suppressed the growth of rapamycin-insensitive tumor cells. Furthermore, we showed that the suppression of Rictor expression was also effective in rapamycin-insensitive cells that had acquired resistance to mTOR kinase inhibitors. These findings indicate that Rictor can be a predictive marker for the use of rapamycin analogs in TNBC and highlight the need to develop therapeutics targeting Rictor in the treatment of TNBC. Topics: Cell Line, Tumor; Drug Resistance, Neoplasm; Female; Gene Expression Regulation, Neoplastic; Humans; Protein Kinase Inhibitors; Rapamycin-Insensitive Companion of mTOR Protein; Sirolimus; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms; Up-Regulation | 2020 |
Inhibition of Akt/mTOR pathway overcomes intrinsic resistance to dasatinib in triple-negative breast cancer.
Currently, the only therapeutic choice for the treatment of triple-negative breast cancer (TNBC) is chemotherapy. In TNBC, despite strong preclinical data, clinical trials of molecular targeted drugs, such as the Src tyrosine kinase inhibitor dasatinib, have failed because of the heterogeneity of TNBC cells. Here, we examined the mechanism of intrinsic resistance to dasatinib in five TNBC cell lines. First, we divided the TNBC cell lines into those sensitive or resistant to dasatinib and found that activation of Src was inhibited in all of the cell lines. In contrast, we found that dasatinib inhibited Akt phosphorylation in only the dasatinib-sensitive cell lines. Consequently, we found that combination treatment with dasatinib and an inhibitor of Akt or mTOR suppressed cell proliferation more than did either monotherapy in the dasatinib-resistant cell lines. Finally, to mimic intrinsic resistance, we established a dasatinib-tolerant TNBC cell line. In this cell line, the combinational effect of Akt/mTOR inhibition with dasatinib was observed, as it was in the cell lines with intrinsic resistance. Together, the present results show that the effect of dasatinib in TNBC is independent of Src inhibition, and that Akt/mTOR inhibition might be an effective strategy to overcome TNBC cells with intrinsic dasatinib resistance. Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Cell Proliferation; Cell Survival; Dasatinib; Drug Resistance, Neoplasm; Female; Heterocyclic Compounds, 3-Ring; Humans; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms | 2020 |
Comp34 displays potent preclinical antitumor efficacy in triple-negative breast cancer via inhibition of NUDT3-AS4, a novel oncogenic long noncoding RNA.
The abnormal PI3K/AKT/mTOR pathway is one of the most common genomic abnormalities in breast cancers including triple-negative breast cancer (TNBC), and pharmacologic inhibition of these aberrations has shown activity in TNBC patients. Here, we designed and identified a small-molecule Comp34 that suppresses both AKT and mTOR protein expression and exhibits robust cytotoxicity towards TNBC cells but not nontumorigenic normal breast epithelial cells. Mechanically, long noncoding RNA (lncRNA) AL354740.1-204 (also named as NUDT3-AS4) acts as a microRNA sponge to compete with AKT1/mTOR mRNAs for binding to miR-99s, leading to decrease in degradation of AKT1/mTOR mRNAs and subsequent increase in AKT1/mTOR protein expression. Inhibition of lncRNA-NUDT3-AS4 and suppression of the NUDT3-AS4/miR-99s association contribute to Comp34-affected biologic pathways. In addition, Comp34 alone is effective in cells with secondary resistance to rapamycin, the best-known inhibitor of mTOR, and displays a greater in vivo antitumor efficacy and lower toxicity than rapamycin in TNBC xenografted models. In conclusion, NUDT3-AS4 may play a proproliferative role in TNBC and be considered a relevant therapeutic target, and Comp34 presents promising activity as a single agent to inhibit TNBC through regulation of NUDT3-AS4 and miR-99s. Topics: Antineoplastic Agents; Base Sequence; Cell Line, Tumor; Cell Proliferation; Curcumin; Disease Progression; Gene Expression Regulation, Neoplastic; Humans; MicroRNAs; Neoplastic Stem Cells; Proto-Oncogene Proteins c-akt; RNA, Long Noncoding; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Transcription, Genetic; Triple Negative Breast Neoplasms | 2020 |
Aurora-A/ERK1/2/mTOR axis promotes tumor progression in triple-negative breast cancer and dual-targeting Aurora-A/mTOR shows synthetic lethality.
Triple-negative breast cancer (TNBC), defined as a tumor subtype that lacks ER, PR, and HER2, shows a poor prognosis due to its aggressive tumor biology and limited treatment options. Deregulation of Aurora kinase A (Aur-A), a member of the mitotic serine/threonine Aurora kinase family, and overactivation of the mTOR pathway commonly occur in multiple cancer types. We previously found that Aur-A activated the mTOR pathway and inhibited autophagy activity in breast cancer cell models. Whether and how Aur-A regulates mTOR in TNBC are still unclear. Here, we found that Aur-A and p-mTOR are highly expressed and positively associated with each other in TNBC cells and tissues. Inhibition or knockdown of Aur-A decreased p-mTOR and suppressed cell proliferation and migration, whereas overexpression of Aur-A increased p-mTOR levels and promoted cell proliferation and migration, which was significantly abrogated by simultaneous silencing of mTOR. Intriguingly, overexpression of Aur-A enhanced the expression of p-mTOR and p-ERK1/2, and silencing or inhibition of ERK1/2 blocked Aur-A-induced p-mTOR. However, silencing or inhibition of mTOR failed to reverse Aur-A-induced ERK1/2, indicating that Aur-A/ERK1/2/mTOR forms an oncogenic cascade in TNBC. We finally found that double inhibition of Aur-A and mTOR showed significant synergistic effects in TNBC cell lines and a xenograft model, indicating that Aur-A and mTOR are potential therapeutic targets in the TNBC subtype. Topics: Animals; Antineoplastic Agents; Aurora Kinase A; Azepines; Cell Line, Tumor; Cell Proliferation; Disease Progression; Drug Synergism; Enzyme Activation; Female; Gene Silencing; Humans; Inhibitory Concentration 50; MAP Kinase Signaling System; Mice, Nude; Neoplasm Invasiveness; Pyrimidines; Sirolimus; Synthetic Lethal Mutations; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms; Xenograft Model Antitumor Assays | 2019 |
Short-Term Environmental Conditioning Enhances Tumorigenic Potential of Triple-Negative Breast Cancer Cells.
Tumor microenvironments expose cancer cells to heterogeneous, dynamic environments by shifting availability of nutrients, growth factors, and metabolites. Cells integrate various inputs to generate cellular memory that determines trajectories of subsequent phenotypes. Here we report that short-term exposure of triple-negative breast cancer cells to growth factors or targeted inhibitors regulates subsequent tumor initiation. Using breast cancer cells with different driver mutations, we conditioned cells lines with various stimuli for 4 hours before implanting these cells as tumor xenografts and quantifying tumor progression by means of bioluminescence imaging. In the orthotopic model, conditioning a low number of cancer cells with fetal bovine serum led to enhancement of tumor-initiating potential, tumor volume, and liver metastases. Epidermal growth factor and the mTORC1 inhibitor ridaforolimus produced similar but relatively reduced effects on tumorigenic potential. These data show that a short-term stimulus increases tumorigenic phenotypes based on cellular memory. Conditioning regimens failed to alter proliferation or adhesion of cancer cells in vitro or kinase signaling through Akt and ERK measured by multiphoton microscopy in vivo, suggesting that other mechanisms enhanced tumorigenesis. Given the dynamic nature of the tumor environment and time-varying concentrations of small-molecule drugs, this work highlights how variable conditions in tumor environments shape tumor formation, metastasis, and response to therapy. Topics: Animals; Carcinogenesis; Cell Adhesion; Cell Count; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Disease Progression; Epidermal Growth Factor; Extracellular Signal-Regulated MAP Kinases; Female; Humans; Luminescent Measurements; Mechanistic Target of Rapamycin Complex 1; Neoplasm Metastasis; Proto-Oncogene Proteins c-akt; Serum Albumin, Bovine; Sirolimus; Triple Negative Breast Neoplasms; Tumor Microenvironment | 2019 |
Berunda Polypeptides: Multi-Headed Fusion Proteins Promote Subcutaneous Administration of Rapamycin to Breast Cancer
Recombinant Elastin-Like Polypeptides (ELPs) serve as attractive scaffolds for nanoformulations because they can be charge-neutral, water soluble, high molecular weight, monodisperse, biodegradable, and decorated with functional proteins. We recently reported that fusion of the FK-506 binding protein 12 (FKBP) to an ELP nanoparticle (FSI) reduces rapamycin (Rapa) toxicity and enables intravenous (IV) therapy in both a xenograft breast cancer model and a murine autoimmune disease model. Rapa has poor solubility, which leads to variable oral bioavailability or drug precipitation following parenteral administration. While IV administration is routine during chemotherapy, cytostatic molecules like Rapa would require repeat administrations in clinical settings. To optimize FKBP/Rapa for subcutaneous (SC) administration, this manuscript expands upon first-generation FSI nanoparticles ( Topics: Animals; Breast Neoplasms; Female; Mice; Nanoparticles; Optical Imaging; Peptides; Sirolimus; Tacrolimus Binding Proteins; Triple Negative Breast Neoplasms | 2017 |
Selective activity of deguelin identifies therapeutic targets for androgen receptor-positive breast cancer.
Triple-negative breast cancers (TNBC) are aggressive malignancies with no effective targeted therapies. Recent gene expression profiling of these heterogeneous cancers and the classification of cell line models now allows for the identification of compounds with selective activities against molecular subtypes of TNBC. The natural product deguelin was found to have selective activity against MDA-MB-453 and SUM-185PE cell lines, which both model the luminal androgen receptor (LAR) subtype of TNBC. Deguelin potently inhibited proliferation of these cells with GI50 values of 30 and 61 nM, in MDA-MB-453 and SUM-185PE cells, respectively. Deguelin had exceptionally high selectivity, 197 to 566-fold, for these cell lines compared to cell lines representing other TNBC subtypes. Deguelin's mechanisms of action were investigated to determine how it produced these potent and selective effects. Our results show that deguelin has dual activities, inhibiting PI3K/Akt/mTOR signaling, and decreasing androgen receptor levels and nuclear localization. Based on these data, we hypothesized that the combination of the mTOR inhibitor rapamycin and the antiandrogen enzalutamide would have efficacy in LAR models. Rapamycin and enzalutamide showed additive effects in MDA-MB-453 cells, and both drugs had potent antitumor efficacy in a LAR xenograft model. These results suggest that the combination of antiandrogens and mTOR inhibitors might be an effective strategy for the treatment of androgen receptor-expressing TNBC. Topics: Animals; Antineoplastic Agents; Benzamides; Cell Line, Tumor; Cell Nucleus; Cell Proliferation; Cell Survival; Drug Synergism; Female; Gene Expression Regulation, Neoplastic; Humans; Mice; Nitriles; Phenylthiohydantoin; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Receptors, Androgen; Rotenone; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms; Xenograft Model Antitumor Assays | 2016 |
Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition.
Triple-negative breast cancer (TNBC) is aggressive and lacks targeted therapies. Phosphatidylinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are frequently activated in TNBC patient tumors at the genome, gene expression and protein levels, and mTOR inhibitors have been shown to inhibit growth in TNBC cell lines. We describe a panel of patient-derived xenografts representing multiple TNBC subtypes and use them to test preclinical drug efficacy of two mTOR inhibitors, sirolimus (rapamycin) and temsirolimus (CCI-779).. We generated a panel of seven patient-derived orthotopic xenografts from six primary TNBC tumors and one metastasis. Patient tumors and corresponding xenografts were compared by histology, immunohistochemistry, array comparative genomic hybridization (aCGH) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) sequencing; TNBC subtypes were determined. Using a previously published logistic regression approach, we generated a rapamycin response signature from Connectivity Map gene expression data and used it to predict rapamycin sensitivity in 1,401 human breast cancers of different intrinsic subtypes, prompting in vivo testing of mTOR inhibitors and doxorubicin in our TNBC xenografts.. Patient-derived xenografts recapitulated histology, biomarker expression and global genomic features of patient tumors. Two primary tumors had PIK3CA coding mutations, and five of six primary tumors showed flanking intron single nucleotide polymorphisms (SNPs) with conservation of sequence variations between primary tumors and xenografts, even on subsequent xenograft passages. Gene expression profiling showed that our models represent at least four of six TNBC subtypes. The rapamycin response signature predicted sensitivity for 94% of basal-like breast cancers in a large dataset. Drug testing of mTOR inhibitors in our xenografts showed 77 to 99% growth inhibition, significantly more than doxorubicin; protein phosphorylation studies indicated constitutive activation of the mTOR pathway that decreased with treatment. However, no tumor was completely eradicated.. A panel of patient-derived xenograft models covering a spectrum of TNBC subtypes was generated that histologically and genomically matched original patient tumors. Consistent with in silico predictions, mTOR inhibitor testing in our TNBC xenografts showed significant tumor growth inhibition in all, suggesting that mTOR inhibitors can be effective in TNBC, but will require use with additional therapies, warranting investigation of optimal drug combinations. Topics: Animals; Antineoplastic Agents; Blotting, Western; Cell Line, Tumor; Class I Phosphatidylinositol 3-Kinases; Comparative Genomic Hybridization; DNA Mutational Analysis; Doxorubicin; Female; Gene Expression Regulation, Neoplastic; Humans; Immunohistochemistry; MCF-7 Cells; Mice; Mutation; Oligonucleotide Array Sequence Analysis; Phosphatidylinositol 3-Kinases; Phosphorylation; Ribosomal Protein S6 Kinases, 70-kDa; Sirolimus; TOR Serine-Threonine Kinases; Transcriptome; Triple Negative Breast Neoplasms; Xenograft Model Antitumor Assays | 2014 |
Combined mTOR inhibitor rapamycin and doxorubicin-loaded cyclic octapeptide modified liposomes for targeting integrin α3 in triple-negative breast cancer.
A novel therapeutic strategy combining mTOR inhibitor rapamycin (RAPA) and doxorubicin (DOX)-loaded cyclic octapeptide liposomes for targeting integrin α3 was expected to combat the triple-negative breast cancer (TNBC). RAPA was loaded into PEG-PCL polymer micelles (M-RAPA) to realize solubilization. Flow cytometry analysis and laser confocal microscopy were used to evaluate the in vitro cellular uptake. The in vivo tumor targeting and bio-distribution were investigated by living fluorescence imaging. As the results, LXY modification significantly enhanced the cellular uptake of liposomal DOX in integrin α3 overexpressed TNBC cells (MDA-MB-231) in vitro and accordingly improved the tumor accumulation of liposomes in vivo. When used alone or in combination with LXY-LS-DOX, M-RAPA could greatly inhibit the expression of HIF-1α protein, which is always highly expressed in malignant cancers and involved in tumor angiogenesis, proliferation, therapeutic resistance and poor prognosis. Meanwhile, the improved efficacy of combined targeted therapy with LXY-LS-DOX and M-RAPA was demonstrated by the in vitro cytotoxicity against model TNBC cells and in vivo anti-tumor activity against mouse bearing TNBC model. These results suggested that the targeted combinational therapy based on LXY-LS-DOX and M-RAPA systems may provide a rational strategy to improve therapeutic outcomes of TNBC. Topics: Animals; Antibiotics, Antineoplastic; Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Doxorubicin; Female; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Integrin alpha3; Liposomes; MCF-7 Cells; Mice; Mice, Inbred BALB C; Micelles; Microscopy, Confocal; Microscopy, Electron, Transmission; Polyethylene Glycols; Polymers; Protein Kinase Inhibitors; Sirolimus; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms | 2014 |
Abrogating phosphorylation of eIF4B is required for EGFR and mTOR inhibitor synergy in triple-negative breast cancer.
Triple-negative breast cancer (TNBC) patients suffer from a highly malignant and aggressive disease. They have a high rate of relapse and often develop resistance to standard chemotherapy. Many TNBCs have elevated epidermal growth factor receptor (EGFR) but are resistant to EGFR inhibitors as monotherapy. In this study, we sought to find a combination therapy that could sensitize TNBC to EGFR inhibitors. Phospho-mass spectrometry was performed on the TNBC cell line, BT20, treated with 0.5 μM gefitinib. Immunoblotting measured protein levels and phosphorylation. Colony formation and growth assays analyzed the treatment on cell proliferation, while MTT assays determined the synergistic effect of inhibitor combination. A Dual-Luciferase reporter gene plasmid measured translation. All statistical analysis was done on CalucuSyn and GraphPad Prism using ANOVAs. Phospho-proteomics identified the mTOR pathway to be of interest in EGFR inhibitor resistance. In our studies, combining gefitinib and temsirolimus decreased cell growth and survival in a synergistic manner. Our data identified eIF4B, as a potentially key fragile point in EGFR and mTOR inhibitor synergy. Decreased eIF4B phosphorylation correlated with drops in growth, viability, clonogenic survival, and cap-dependent translation. Taken together, these data suggest EGFR and mTOR inhibitors abrogate growth, viability, and survival via disruption of eIF4B phosphorylation leading to decreased translation in TNBC cell lines. Further, including an mTOR inhibitor along with an EGFR inhibitor in TNBC with increased EGFR expression should be further explored. Additionally, translational regulation may play an important role in regulating EGFR and mTOR inhibitor synergy and warrant further investigation. Topics: Antineoplastic Combined Chemotherapy Protocols; Cell Line; Cell Line, Tumor; Cell Proliferation; Drug Synergism; ErbB Receptors; Eukaryotic Initiation Factors; Female; Gefitinib; HEK293 Cells; Humans; Phosphorylation; Protein Kinase Inhibitors; Quinazolines; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Triple Negative Breast Neoplasms | 2014 |