sirolimus has been researched along with Papilloma* in 5 studies
5 other study(ies) available for sirolimus and Papilloma
Article | Year |
---|---|
Use of Topical Sirolimus (Rapamycin) for Treating Confluent and Reticulated Papillomatosis.
Topics: Acanthosis Nigricans; Adolescent; Humans; Neck; Papilloma; Sirolimus; Skin Cream; Skin Neoplasms; Thorax; Treatment Outcome | 2021 |
Metformin inhibits skin tumor promotion in overweight and obese mice.
In the present study, the ability of metformin to inhibit skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA) was analyzed in mice maintained on either an overweight control diet or an obesity-inducing diet. Rapamycin was included for comparison, and a combination of metformin and rapamycin was also evaluated. Metformin (given in the drinking water) and rapamycin (given topically) inhibited development of both papillomas and squamous cell carcinomas in overweight and obese mice in a dose-dependent manner. A low-dose combination of these two compounds displayed an additive inhibitory effect on tumor development. Metformin treatment also reduced the size of papillomas. Interestingly, all treatments seemed to be at least as effective for inhibiting tumor formation in obese mice, and both metformin and rapamycin were more effective at reducing tumor size in obese mice compared with overweight control mice. The effect of metformin on skin tumor development was associated with a significant reduction in TPA-induced epidermal hyperproliferation. Furthermore, treatment with metformin led to activation of epidermal AMP-activated protein kinase (AMPK) and attenuated signaling through mTOR complex (mTORC)-1 and p70S6K. Combinations of metformin and rapamycin were more effective at blocking epidermal mTORC1 signaling induced by TPA consistent with the greater inhibitory effect on skin tumor promotion. Collectively, the current data demonstrate that metformin given in the drinking water effectively inhibited skin tumor promotion in both overweight and obese mice and that the mechanism involves activation of epidermal AMPK and attenuated signaling downstream of mTORC1. Topics: Adenylate Kinase; Adiponectin; Animals; Body Weight; Carcinogenesis; Carcinoma, Squamous Cell; Diet; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Insulin; Insulin-Like Growth Factor I; Leptin; Mechanistic Target of Rapamycin Complex 1; Metformin; Mice; Mice, Obese; Multiprotein Complexes; Neoplasms, Experimental; Obesity; Overweight; Papilloma; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; Skin Neoplasms; Tetradecanoylphorbol Acetate; TOR Serine-Threonine Kinases | 2014 |
Rapamycin is a potent inhibitor of skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate.
Aberrant activation of phosphoinositide-3-kinase (PI3K)/Akt signaling has been implicated in the development and progression of multiple human cancers. During the process of skin tumor promotion induced by treatment with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), activation of epidermal Akt occurs as well as several downstream effectors of Akt, including the activation of mTORC1. Rapamycin, an established mTORC1 inhibitor, was used to further explore the role of mTORC1 signaling in epithelial carcinogenesis, specifically during the tumor promotion stage. Rapamycin blocked TPA-induced activation of mTORC1 as well as several downstream targets. In addition, TPA-induced epidermal hyperproliferation and hyperplasia were inhibited in a dose-dependent manner with topical rapamycin treatments. Immunohistochemical analyses of the skin from mice in this multiple treatment experiment revealed that rapamycin also significantly decreased the number of infiltrating macrophages, T cells, neutrophils, and mast cells seen in the dermis following TPA treatment. Using a two-stage skin carcinogenesis protocol with 7,12-dimethylbenz(a)anthracene (DMBA) as initiator and TPA as the promoter, rapamycin (5-200 nmol per mouse given topically 30 minutes prior to TPA) exerted a powerful antipromoting effect, reducing both tumor incidence and tumor multiplicity. Moreover, topical application of rapamycin to existing papillomas induced regression and/or inhibited further growth. Overall, the data indicate that rapamycin is a potent inhibitor of skin tumor promotion and suggest that signaling through mTORC1 contributes significantly to the process of skin tumor promotion. The data also suggest that blocking this pathway either alone or in combination with other agents targeting additional pathways may be an effective strategy for prevention of epithelial carcinogenesis. Topics: 9,10-Dimethyl-1,2-benzanthracene; Animals; Antibiotics, Antineoplastic; Anticarcinogenic Agents; Blotting, Western; Carcinogens; Humans; Hyperplasia; Mice; Neoplasm Staging; Papilloma; Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; Skin Neoplasms; Tetradecanoylphorbol Acetate; TOR Serine-Threonine Kinases; Tumor Cells, Cultured | 2011 |
Rapamycin inhibits anal carcinogenesis in two preclinical animal models.
The incidence of anal cancer is increasing especially among HIV-infected persons in the HAART era. Treatment of this cancer is based upon traditional chemoradiotherapeutic approaches, which are associated with high morbidity and of limited effectiveness for patients with high-grade disease. The mammalian target of rapamycin (mTOR) pathway has been implicated in several human cancers, and is being investigated as a potential therapeutic target. In archival human anal cancers, we observed mTOR pathway activation. To assess response of anal cancer to mTOR inhibition, we utilized two newly developed mouse models, one in which anal cancers are induced to arise in HPV16 transgenic mice and the second a human anal cancer xenograft model. Using the transgenic mouse model, we assessed the preventative effect of rapamycin on neoplastic disease. We saw significant changes in the overall incidence of tumors, and tumor growth rate was also reduced. Using both the transgenic mouse and human anal xenograft mouse models, we studied the therapeutic effect of rapamycin on preexisting anal cancer. Rapamycin was found to significantly slow, if not stop, the growth of both mouse and human anal cancers. As has been seen in other cancers, rapamycin treatment led to an activation of the MAPK pathway. These results provide us cause to pursue further the evaluation of rapamycin as a therapeutic agent in the control of anal cancer. Topics: 9,10-Dimethyl-1,2-benzanthracene; Animals; Antibiotics, Antineoplastic; Anus Neoplasms; Blotting, Western; Carcinogens; Cell Transformation, Neoplastic; Disease Models, Animal; Female; Fluorescent Antibody Technique; Humans; Immunoenzyme Techniques; Male; Mice; Mice, Nude; Mice, SCID; Mice, Transgenic; Oncogene Proteins, Viral; Papilloma; Papillomaviridae; Papillomavirus E7 Proteins; Repressor Proteins; Sirolimus | 2010 |
Rapamycin prevents early onset of tumorigenesis in an oral-specific K-ras and p53 two-hit carcinogenesis model.
Head and neck squamous cell carcinomas (HNSCC), the majority of which occur in the oral cavity, remain a significant cause of morbidity and mortality worldwide. A major limitation in HNSCC research has been the paucity of animal models to test the validity of current genetic paradigms of tumorigenesis and to explore the effectiveness of new treatment modalities and chemopreventive strategies. Here, we have developed an inducible oral-specific animal tumor model system, which consists in the expression of a tamoxifen-inducible Cre recombinase (CreER(tam)) under the control of the cytokeratin 14 (K14) promoter (K14-CreER(tam)) and mice in which the endogenous K-ras locus is targeted (LSL-K-ras(G12D)), thereby causing the expression of endogenous levels of oncogenic K-ras(G12D) following removal of a stop element. Surprisingly, whereas K14-CreER(tam) can also target the skin, K14-CreER(tam)/LSL-K-ras(G12D) mice developed papillomas exclusively in the oral mucosa within 1 month after tamoxifen treatment. These lesions were highly proliferative but never progressed to carcinoma. However, when crossed with p53 conditional knockout (p53(flox/flox)) mice, mice developed SCCs exclusively on the tongue as early as 2 weeks after tamoxifen induction, concomitant with a remarkable activation of the mammalian target of rapamycin (mTOR) signaling pathway. The availability of this ras and p53 two-hit animal model system recapitulating HNSCC progression may provide a suitable platform for exploring novel molecular targeted approaches for the treatment of this devastating disease. Indeed, we show here that mTOR inhibition by the use of rapamycin is sufficient to halt tumor progression in this genetically defined oral cancer model system, thereby prolonging animal survival. Topics: Animals; Antibiotics, Antineoplastic; Carcinoma, Squamous Cell; Cell Division; Disease Models, Animal; Genes, p53; Genes, ras; Head and Neck Neoplasms; Humans; Integrases; Mice; Mouth Mucosa; Mouth Neoplasms; Papilloma; Sirolimus; Tamoxifen | 2009 |