sirolimus has been researched along with Osteoporosis* in 18 studies
2 review(s) available for sirolimus and Osteoporosis
Article | Year |
---|---|
Mammalian target of rapamycin as a therapeutic target in osteoporosis.
The mechanistic target of rapamycin (mTOR) plays a key role in sensing and integrating large amounts of environmental cues to regulate organismal growth, homeostasis, and many major cellular processes. Recently, mounting evidences highlight its roles in regulating bone homeostasis, which sheds light on the pathogenesis of osteoporosis. The activation/inhibition of mTOR signaling is reported to positively/negatively regulate bone marrow mesenchymal stem cells (BMSCs)/osteoblasts-mediated bone formation, adipogenic differentiation, osteocytes homeostasis, and osteoclasts-mediated bone resorption, which result in the changes of bone homeostasis, thereby resulting in or protect against osteoporosis. Given the likely importance of mTOR signaling in the pathogenesis of osteoporosis, here we discuss the detailed mechanisms in mTOR machinery and its association with osteoporosis therapy. Topics: Animals; Bone and Bones; Humans; Osteoblasts; Osteoclasts; Osteoporosis; Sirolimus; TOR Serine-Threonine Kinases | 2018 |
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
1 trial(s) available for sirolimus and Osteoporosis
16 other study(ies) available for sirolimus and Osteoporosis
Article | Year |
---|---|
Inflammation produced by senescent osteocytes mediates age-related bone loss.
The molecular mechanisms of age-related bone loss are unclear and without valid drugs yet. The aims of this study were to explore the molecular changes that occur in bone tissue during age-related bone loss, to further clarify the changes in function, and to predict potential therapeutic drugs.. We collected bone tissues from children, middle-aged individuals, and elderly people for protein sequencing and compared the three groups of proteins pairwise, and the differentially expressed proteins (DEPs) in each group were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). K-means cluster analysis was then used to screen out proteins that continuously increased/decreased with age. Canonical signaling pathways that were activated or inhibited in bone tissue along with increasing age were identified by Ingenuity Pathway Analysis (IPA). Prediction of potential drugs was performed using the Connectivity Map (CMap). Finally, DEPs from sequencing were verified by Western blot, and the drug treatment effect was verified by quantitative real-time PCR.. The GO and KEGG analyses show that the DEPs were associated with inflammation and bone formation with aging, and the IPA analysis shows that pathways such as IL-8 signaling and acute-phase response signaling were activated, while glycolysis I and EIF2 signaling were inhibited. A total of nine potential drugs were predicted, with rapamycin ranking the highest. In cellular experiments, rapamycin reduced the senescence phenotype produced by the H. With age, inflammatory pathways are activated in bone tissue, and signals that promote bone formation are inhibited. This study contributes to the understanding of the molecular changes that occur in bone tissue during age-related bone loss and provides evidence that rapamycin is a drug of potential clinical value for this disease. The therapeutic effects of the drug are to be further studied in animals. Topics: Animals; Hydrogen Peroxide; Inflammation; Osteocytes; Osteoporosis; Sirolimus | 2023 |
Cadmium accelerates autophagy of osteocytes by inhibiting the PI3K/AKT/mTOR signaling pathway.
Cadmium (Cd) can damage bone cells and cause osteoporosis. Osteocytes are the most numerous bone cells and also important target cells for Cd-induced osteotoxic damage. Autophagy plays important role in the progression of osteoporosis. However, osteocyte autophagy in Cd-induced bone injury is not well characterized. Thus, we established a Cd-induced bone injury model in BALB/c mice and a cellular damage model in MLO-Y4 cells. Aqueous Cd exposure for 16 months showed an increase in plasma alkaline phosphatase (ALP) activity and increase in urine calcium (Ca) and phosphorus (P) concentrations in vivo. Moreover, expression level of autophagy-related microtubule-associated protein 1A/1B-light chain 3 II (LC3II) and autophagy-related 5 (ATG5) proteins were induced, and the expression of sequestosome-1 (p62) was reduced, along with Cd-induced trabecular bone damage. In addition, Cd inhibited the phosphorylation of mammalian target of rapamycin (mTOR), protein kinase B (AKT), and phosphatidylinositol 3-kinase (PI3K). In vitro, 80 μM Cd concentrations exposure upregulated LC3II protein expression, and downregulated of p62 protein expression. Similarly, we found that treatment with 80 μM Cd resulted in a reduction in the phosphorylation levels of mTOR, AKT, and PI3K. Further experiments revealed that addition of rapamycin, an autophagy inducer, enhanced autophagy and alleviated the Cd-induced damage to MLO-Y4 cells. The findings of our study reveal for the first time that Cd causes damage to both bone and osteocytes, as well as induces autophagy in osteocytes and inhibits PI3K/AKT/mTOR signaling, which could be a protective mechanism against Cd-induced bone injury. Topics: Animals; Autophagy; Cadmium; Mammals; Mice; Osteocytes; Osteoporosis; Phosphatidylinositol 3-Kinase; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2023 |
Degradation of the NOTCH intracellular domain by elevated autophagy in osteoblasts promotes osteoblast differentiation and alleviates osteoporosis.
Topics: Alkaline Phosphatase; Animals; Autophagy; Beclin-1; Cell Differentiation; Core Binding Factor Alpha 1 Subunit; Cysteine; Mice; Microtubule-Associated Proteins; Osteoblasts; Osteocalcin; Osteogenesis; Osteoporosis; Osteoprotegerin; Phosphates; Receptors, Notch; Selective Estrogen Receptor Modulators; Sirolimus; TOR Serine-Threonine Kinases | 2022 |
Cholesterol inhibits autophagy in RANKL-induced osteoclast differentiation through activating the PI3K/AKT/mTOR signaling pathway.
A dysregulated balance between bone formation and bone resorption controlled by osteoblast and osteoclast will lead to osteoporosis. Cholesterol (CHO) is a crucial factor leading to osteoporosis, and autophagy appears to involve it. Therefore, we aimed to study the molecular mechanism of autophagy in CHO-induced osteoclasts differentiation.. Nuclear factor-κ B ligand as a receptor activator was used to induce osteoclasts differentiation of murine macrophage RAW264.7 treated with CHO, PI3-kinase inhibitor (LY294002), and Rapamycin (RAPA), respectively. Western blot assay was used to detect the expression of TRAP/ACP5 and the proteins involved in autophagy and the PI3K/AKT/mTOR signaling pathway. In addition, TRAP staining, bone resorption assay, and F-actin immunofluorescence were performed to evaluate the ability of osteoclast formation. Transmission electron microscopy and immunofluorescence were also executed to observed the expression of LC3B, and autophagosome.. When RAW264.7 was treated with 20 μg/mL CHO for 5 consecutive days, It exhibited the optimal osteoclast activity. In addition, CHO could inhibit autophagy and activate the PI3K/AKT/mTOR signaling pathway. Moreover, the effects of CHO on osteoclast differentiation and autophagy could partially be reversed by LY294002 and RAPA.. Therefore, our results demonstrated that CHO could inhibit autophagy during osteoclast differentiation by activating the PI3K/AKT/mTOR signaling pathway. These findings provided important theoretical basis for CHO in bone resorption and formation. Topics: Actins; Animals; Autophagy; Bone Resorption; Cell Differentiation; Cholesterol; Ligands; Mice; Osteoclasts; Osteoporosis; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; RANK Ligand; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2022 |
Rapamycin regulates osteogenic differentiation through Parkin-mediated mitophagy in rheumatoid arthritis.
Varying degrees of bone destruction and bone loss occur in the development of rheumatoid arthritis (RA). Nevertheless, the mechanism underlying osteoporosis in the development of RA is not completely elucidated. Recent evidence indicates that mitophagy may play a vital role in regulating the differentiation and function of preosteoblast. Parkin is associated with mitophagy and various inflammatory diseases, but the precise role of Parkin in the treatment of osteoporosis in RA is unclear. In the present study, we found that the abnormal bone metabolism of RA is related to the activation of the mechanistic targets of mTORC1 pathway, and chronic inflammation which regulates the differentiation of preosteoblast through mitophagy. In this study, we found that Parkin was upregulated, and the mitochondrion was damaged in tumor necrosis factor alpha (TNF-α) stimulated preosteoblasts. Rapamycin (RAPA, an mTORC1 pathway blocker) upregulation of Parkin-mediated mitophagy tends to attenuate mitochondrial impairment caused by TNF-α in preosteoblasts. Theexperimentinvivo demonstrated that the combination therapy with TNF-α neutralizing antibody and RAPA significantly reduced osteoporosis in AIA mice. Drug inhibition of this pathway can be a potential treatment for osteoporosis in patients with RA. Topics: Animals; Arthritis, Rheumatoid; Mechanistic Target of Rapamycin Complex 1; Mice; Mitophagy; Osteogenesis; Osteoporosis; Sirolimus; Tumor Necrosis Factor-alpha; Ubiquitin-Protein Ligases | 2022 |
Rapamycin improves bone mass in high-turnover osteoporosis with iron accumulation through positive effects on osteogenesis and angiogenesis.
Iron accumulation is an independent risk factor for type I osteoporosis, but the molecular mechanisms of the phenomenon are not well defined, and effective therapy has not been reported. Here, we found that the level of mTOR was increased both in wild-type mouse models with iron accumulation and transgenic mouse models (Hepc Topics: Alkaline Phosphatase; Animals; Bone Density; Cell Line; Cell Proliferation; Enzyme-Linked Immunosorbent Assay; Human Umbilical Vein Endothelial Cells; Humans; Iron; Mice; Mice, Knockout; Microscopy, Electron, Scanning; Neovascularization, Pathologic; Osteogenesis; Osteoporosis; Real-Time Polymerase Chain Reaction; Sirolimus | 2019 |
Human osteogenic differentiation in Space: proteomic and epigenetic clues to better understand osteoporosis.
In the frame of the VITA mission of the Italian Space Agency (ASI), we addressed the problem of Space osteoporosis by using human blood-derived stem cells (BDSCs) as a suitable osteogenic differentiation model. In particular, we investigated proteomic and epigenetic changes in BDSCs during osteoblastic differentiation induced by rapamycin under microgravity conditions. A decrease in the expression of 4 embryonic markers (Sox2, Oct3/4, Nanog and E-cadherin) was found to occur to a larger extent on board the ISS than on Earth, along with an earlier activation of the differentiation process towards the osteogenic lineage. The changes in the expression of 4 transcription factors (Otx2, Snail, GATA4 and Sox17) engaged in osteogenesis supported these findings. We then ascertained whether osteogenic differentiation of BDSCs could depend on epigenetic regulation, and interrogated changes of histone H3 that is crucial in this type of gene control. Indeed, we found that H3K4me3, H3K27me2/3, H3K79me2/3 and H3K9me2/3 residues are engaged in cellular reprogramming that drives gene expression. Overall, we suggest that rapamycin induces transcriptional activation of BDSCs towards osteogenic differentiation, through increased GATA4 and Sox17 that modulate downstream transcription factors (like Runx2), critical for bone formation. Additional studies are warranted to ascertain the possible exploitation of these data to identify new biomarkers and therapeutic targets to treat osteoporosis, not only in Space but also on Earth. Topics: Aerospace Medicine; Biomarkers; Cell Differentiation; Cell Lineage; Epigenesis, Genetic; GATA4 Transcription Factor; Histones; Humans; Mesenchymal Stem Cells; Osteogenesis; Osteoporosis; Otx Transcription Factors; Proteome; Proteomics; Sirolimus; Snail Family Transcription Factors; SOXF Transcription Factors; Weightlessness | 2019 |
Concurrent antitumor and bone-protective effects of everolimus in osteotropic breast cancer.
The mammalian target of rapamycin inhibitor everolimus is approved as an antitumor agent in advanced estrogen receptor-positive breast cancer. Surrogate bone marker data from clinical trials suggest effects on bone metabolism, but the mode of action of everolimus in bone biology remains unclear. In this study, we assessed potential bone-protective effects of everolimus in the context of osteotropic tumors.. The effects of everolimus on cancer cell viability in vitro and on tumor growth in vivo were assessed. Everolimus-regulated osteoclastogenesis and osteoblastogenesis were also assessed in vitro before we assessed the bone-protective effect of everolimus in a model where bone loss was induced in ovariectomized (OVX) mice. Finally, the role of everolimus in the progression of osteolytic bone disease was assessed in an intracardiac model of breast cancer bone metastases.. At low concentrations (1 nM) in vitro, everolimus reduced the viability of human and murine cancer cell lines and impaired the osteoclastogenesis of osteoclast progenitors as assessed by quantitative real-time polymerase chain reaction and counting tartrate-resistant acid phosphatase-positive, multinucleated osteoclasts (p < 0.001). Everolimus had little or no deleterious effect on osteoblastogenesis in vitro, with concentrations of 1 and 10 nM increasing the messenger RNA expression of osteoblast marker genes (p ≤ 0.05) and leaving mineralization in differentiated human mesenchymal stem cells unchanged. Everolimus treatment (1 mg/kg body weight/day) prevented the bone loss observed in OVX mice and concurrently inhibited the metastatic growth of MDA-MB-231 cells by 70% (p < 0.002) while preserving bone mass in an intracardiac model of bone metastasis.. These results underline the antitumor effects of everolimus and highlight its bone-protective efficacy, warranting further research on the potential implications on bone health in populations prone to osteoporosis and bone metastases, such as postmenopausal women with breast cancer. Topics: Animals; Bone Neoplasms; Breast Neoplasms; Cell Differentiation; Cell Line, Tumor; Cell Survival; Everolimus; Female; Humans; Mice; Osteoblasts; Osteoporosis; RAW 264.7 Cells; Sirolimus | 2017 |
Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy.
Osteocyte is the orchestrator of bone remolding and decline in osteocyte autophagy is involved in senile osteoporosis. Our results suggested that rapamycin, at least in part by activating osteocyte autophagy, reduced the severity of age-related bone changes in trabecular bone of old male rats.. Previous literatures have showed that osteocyte is the orchestrator of bone remolding and age-related decline in osteocyte number is associated with senile osteoporosis. Autophagy is an important cellular protective mechanism which can preserve osteocyte viability and failure of autophagy in osteocyte with age has been linked to senile osteoporosis. The purpose of this study was to explore whether rapamycin, one activator of autophagy, has protective effects on senile osteoporosis through inducing osteocyte autophagy.. Fifty-two 24-month-old male Sprague-Dawley (SD) rats were randomly divided into two groups. Rapamycin (1 mg/kg weight/day) or DMSO vehicle control was administered intraperitoneally for 12 weeks. BMD and bone microstructure were determined by Micro-CT. Fluorochrome labeling of the bones was performed to measure the mineral apposition rate (MAR). TRAP staining was performed to evaluate osteoclast number. The plasma levels of bone turnover markers were also analyzed. The effects of rapamycin on osteocyte autophagy were determined by immunohistochemistry, Western blot, and q-PCR. TUNEL was used to determine the prevalence of osteocyte apoptosis.. Micro-CT evaluation demonstrated that rapamycin had a protective effect on age-related bone loss in trabecular bone. Besides, rapamycin resulted in an obvious increase of MAR and a decrease of osteoclast number in contrast to the control group. Furthermore, rapamycin also induced autophagy in osteocyte demonstrated by increased LC3-positive osteocyte and increased LC3 turnover. In addition, rats treated with rapamycin exhibited decreased apoptosis of osteocyte determined by TUNEL.. These results suggested that rapamycin, at least in part by activating osteocyte autophagy, reduced the severity of age-related bone changes in trabecular bone of old male rats. Therefore, rapamycin might be a feasible therapeutic approach for senile osteoporosis. Topics: Animals; Apoptosis; Autophagy; Bone Density Conservation Agents; Drug Evaluation, Preclinical; Humans; Lumbar Vertebrae; Male; Osteocytes; Osteoporosis; Rats, Sprague-Dawley; Sirolimus; Tibia; X-Ray Microtomography | 2016 |
Is it necessary to investigate rapamycin-modulated autophagy during the development of experimental osteoporosis in female rat?
Topics: Animals; Apoptosis; Autophagy; Female; Osteoporosis; Rats; Sirolimus | 2016 |
Impact of sirolimus, tacrolimus and mycophenolate mofetil on osteoclastogenesis--implications for post-transplantation bone disease.
Post-transplantation bone disease is associated with a high degree of morbidity including pain and fractures. Glucocorticoid-induced osteoporosis on top of pre-existing renal osteodystrophy is considered the major pathogenic factor, while the role of non-glucocorticoid immunosuppressants is less well defined.. In this study, we investigated the influence of sirolimus (SRL) versus calcineurin inhibitor (CI)-based immunosuppressive regimens on biomarkers of bone resorption in renal transplant patients. In addition, the impact of SRL, tacrolimus and mycophenolate mofetil (MMF) on osteoclast activation and function was assessed in cell culture systems.. Using this approach, we demonstrated reduced serum levels of bone resorption markers in patients treated with SRL after kidney transplantation compared to a CI-based regimen. In line with this observation, we detected profoundly reduced osteoclast differentiation and subsequently diminished hydroxyapatite resorption in the presence of SRL compared to MMF and tacrolimus in vitro. Moreover, SRL significantly reduced osteoclast precursor proliferation in vitro compared to tacrolimus and led to augmented apoptosis in osteoclast precursors.. Taken together, SRL was shown to inhibit osteoclast formation in vivo and in vitro. SRL thus may have the potential to balance osteoclast promoting effects of glucocorticoids and CI, thereby counteracting the development of accelerated osteoporosis in renal transplant recipients. Topics: Adult; Aged; Bone Resorption; Cell Differentiation; Cross-Sectional Studies; Female; Humans; Immunosuppressive Agents; Kidney Transplantation; Male; Middle Aged; Mycophenolic Acid; Osteoclasts; Osteoporosis; RANK Ligand; Receptor Activator of Nuclear Factor-kappa B; Sirolimus; Tacrolimus; Young Adult | 2011 |
Immunosuppressive agents and bone disease in renal transplant patients with hypercalcemia.
Renal transplantation is the definitive treatment for many metabolic abnormalities of uremic patients, although it is only partially effective for renal osteodystrophy, which may interact with posttransplant renal osteopathy. Osteopenic-osteoporotic syndrome represents, together with fractures secondary to osteoporosis and osteonecrosis, the bone complication most related to renal transplantation. Several factors contribute to the pathogenesis of posttransplantation osteoporosis, particularly immunosuppressive treatment. In this study, we evaluated the prevalence of factors related to posttransplant renal osteopathy and the clinical impact of immunosuppressive protocols. We studied 24 renal transplant recipients with hypercalcemia. Glomerular filtration rate was >50 mL/min. Mean age, time on dialysis, and time from transplantation were 49.6, 5.4, and 6.9 years, respectively. We evaluated serum and urine calcium and phosphorus, calcitonin, parathormone, bone-specific alkaline phosphatase, osteocalcin, urine deoxypyridinoline, telopeptide of type 1 procollagen, 1,25-(OH)(2) and 25-OH vitamin D, parathyroid ultrasound, and computerized bone mineralometry. The combination of sirolimus and steroids resulted in the most disadvantageous outcomes regarding alkaline phosphatase and mineralometry. Calcineurin inhibitors did not significantly influence bone metabolism markers; mycophenolate mofetil evidenced no effect on bone. According to the literature, steroids account for the abnormalities found in our patients and in severe osteopenia. Several factors may contribute to the development of osteoporosis and fractures in transplantation patients, although they are overcome by the prominent effect of steroids. In patients at high risk of osteoporosis, steroid-free therapy should be considered. Everolimus is indicated for diseases with bone loss. Combined therapy with everolimus and mycophenolic acid without cyclosporine and steroids, seemed to be particularly indicated. Prophylactic treatments should be commenced early. No single marker was useful to diagnose posttransplant renal osteopathy. The definitive diagnosis should be made by bone biopsy during transplantation, and noninvasive procedures, such as densitometry and evaluation of biologic markers, may be useful during follow-up. Topics: Adult; Alkaline Phosphatase; Animals; Bone Density; Bone Diseases; Calcium; Disease Models, Animal; Female; Fractures, Bone; Humans; Hypercalcemia; Immunosuppressive Agents; Kidney Transplantation; Male; Middle Aged; Osteocalcin; Osteoporosis; Phosphorus; Procollagen; Rats; Sirolimus; Uremia | 2010 |
Bone disease in renal transplantation and pleotropic effects of vitamin D therapy.
Osteoporosis, osteopenia, and osteonecrosis are common in renal transplant recipients. In this study, we evaluated relationship between bone mineral density (BMD) and posttransplant duration; creatinine clearance; serum levels of glucose, calcium, phosphorus, alkaline phosphatase, vitamin D (vitD), parathormone, magnesium, C telopeptide, osteocalcin, lipids, and vit D therapy. Eighty five subjects included in this study had a mean age of 36.25 ± 10.5 years. At least at 6-month intervals we measured femoral neck (FN) and lumbar vertebra (LV) by DEXA and biochemical parameters. VitD was prescribed in 57 patients (vitDG). The mean duration of posttransplantation follow-up was 9.82 ± 2.72 months. T scores (TS) of FN and LV were normal in 29.4% and 21.2%; osteopenia in 56.5% and 49.4%; and osteoporosis in 12.1% and 29.4% of patients, respectively. Upon follow-up, TS improved significantly from -1.58 to -1.46 in FN and from -1.88 to -1.70 in LV (P < .05 for both). In patients receiving vitDG, TS improved significantly from -1.74 to -1.61 on FN and from -2.16 to -1.97 on LV (P < .05 for both). Osteocalcin and vitDG levels decreased in all patients (P < .05 for all). Blood urea nitrogen and serum creatinine increased (P < .05). In VitDG cohort, triglyceride levels decreased (P < .05) with unchanged blood glucose values; but among the other patients, triglycerides were unchanged but glucose levels had increased (P < .05). Bone disease including osteopenia or osteoporosis was observed among 70%. During the follow-up period, BMD increased significantly from baseline at 9.82 ± 2.72 months. VitD therapy caused more prominent improvements in BMD and decreases in serum triglycerides as well as mutigated the increase in blood glucose. Topics: Azathioprine; Bone Density; Bone Diseases; Bone Diseases, Metabolic; Creatinine; Female; Humans; Kidney Transplantation; Lipids; Male; Methylprednisolone; Mycophenolic Acid; Osteonecrosis; Osteoporosis; Sirolimus; Vitamin D | 2010 |
Effect of rapamycin on hepatic osteodystrophy in rats with portasystemic shunting.
To study if T-cell activation related to portasystemic shunting causes osteoclast-mediated bone loss through RANKL-dependent pathways. We also investigated if T-cell inhibition using rapamycin would protect against bone loss in rats.. Portasystemic shunting was performed in male Sprague-Dawley rats and rapamycin 0.1 mg/kg was administered for 15 wk by gavage. Rats received powderized chow and supplemental feeds to prevent the effects of malnutrition on bone composition. Weight gain and growth was restored after surgery in shunted animals. At termination, biochemical parameters of bone turnover and quantitative bone histology were assessed. Markers of T-cell activation, inflammatory cytokine production, and RANKL-dependent pathways were measured. In addition, the roles of IGF-1 and hypogonadism were investigated.. Portasystemic shunting caused low turnover osteoporosis that was RANKL independent. Bone resorbing cytokine levels, including IL-1, IL-6 and TNFalpha, were not increased in serum and TNFalpha and RANKL expression were not upregulated in PBMC. Portasystemic shunting increased the circulating CD8+ T-cell population. Rapamycin decreased the circulating CD8+ T-cell population, increased CD8+ CD25+ T-regulatory cell population and improved all parameters of bone turnover.. Osteoporosis caused by portasystemic shunting may be partially ameliorated by rapamycin in the rat model of hepatic osteodystrophy. Topics: Animals; Body Mass Index; Bone Density; Bone Resorption; Carrier Proteins; CD8-Positive T-Lymphocytes; Cytokines; Eating; Gene Expression Regulation; Immunosuppressive Agents; Lymphocyte Activation; Male; Membrane Glycoproteins; Osteoclasts; Osteoporosis; Portasystemic Shunt, Surgical; RANK Ligand; Rats; Rats, Sprague-Dawley; Sirolimus; Tumor Necrosis Factor-alpha | 2006 |
Calcineurin-inhibitor induced pain syndrome after organ transplantation.
Topics: Adult; Bone and Bones; Calcineurin Inhibitors; Cyclosporins; Everolimus; Follow-Up Studies; Humans; Immunosuppressive Agents; Kidney Transplantation; Magnetic Resonance Imaging; Male; Middle Aged; Osteoporosis; Pain; Postoperative Period; Radiography; Radionuclide Imaging; Sirolimus; Syndrome; Tacrolimus; Time Factors | 2006 |
Rapamycin: a bone sparing immunosuppressant?
Immunosuppressant therpay is associated with osteoporosis both clinically, post-transplantation, and experimentally. In rats, cyclosporin A (CsA) and FK506 induce a state of high turnover rapid bone loss. After 14 days of administration in immunosuppressive doses, the more recently discovered immunosuppressant, rapamycin, resulted in no change of cancellous bone volume. A longer study over 28 days has now been carried out; contrasting the new drug with CsA and FK506. Sixty, 10-week-old Sprague-Dawley rats were randomly divided into five groups of 12 rats each. The first group served as an aging control. The remaining four groups received, by daily gavage, a combined vehicle placebo, CsA 15 mg/kg, FK506 5 mg/kg, and rapamycin 2.5 mg/kg, respectively. CsA- and FK506-treated rats, but not those treated with rapamycin, demonstrated high turnover osteoporosis with raised serum 1,25(OH)2D (p < 0.05) and elevated serum osteocalcin (p < 0.05). The trabecular bone area was decreased by 66% (p < 0.01) in the CsA group and 56% (p < 0.05) in the FK506-treated group compared with the control animals. The CsA- and the rapamycin-treated groups failed to gain weight and developed severe hyperglycemia (> 20 mmol/l, p < 0.001) by day 14 but which largely resolved by day 28. Unlike the groups treated with CsA and FK506, rapamycin-treated rats had no loss of trabecular bone volume but there was increased modeling and remodeling and a decreased longitudinal growth rate. Rapamycin may thus confer a distinct advantage over the established immunosuppressants in not reducing bone volume in the short term.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Analysis of Variance; Animals; Blood Glucose; Blood Urea Nitrogen; Bone Density; Calcium; Cyclosporine; Dihydroxycholecalciferols; Disease Models, Animal; Immunosuppressive Agents; Male; Osteocalcin; Osteoporosis; Parathyroid Hormone; Polyenes; Radioimmunoassay; Random Allocation; Rats; Rats, Sprague-Dawley; Sirolimus; Tacrolimus; Tibia | 1995 |