sirolimus has been researched along with Obesity* in 70 studies
9 review(s) available for sirolimus and Obesity
Article | Year |
---|---|
Targeting mTOR in the Context of Diet and Whole-body Metabolism.
The mechanistic target of the rapamycin (mTOR) signaling pathway is the central regulator of cell growth and proliferation by integrating growth factor and nutrient availability. Under healthy physiological conditions, this process is tightly coordinated and essential to maintain whole-body homeostasis. Not surprisingly, dysregulated mTOR signaling underpins several diseases with increasing incidence worldwide, including obesity, diabetes, and cancer. Consequently, there is significant clinical interest in developing therapeutic strategies that effectively target this pathway. The transition of mTOR inhibitors from the bench to bedside, however, has largely been marked with challenges and shortcomings, such as the development of therapy resistance and adverse side effects in patients. In this review, we discuss the current status of first-, second-, and third-generation mTOR inhibitors as a cancer therapy in both preclinical and clinical settings, with a particular emphasis on the mechanisms of drug resistance. We focus especially on the emerging role of diet as an important environmental determinant of therapy response, and posit a conceptual framework that links nutrient availability and whole-body metabolic states such as obesity with many of the previously defined processes that drive resistance to mTOR-targeted therapies. Given the role of mTOR as a central integrator of cell metabolism and function, we propose that modulating nutrient inputs through dietary interventions may influence the signaling dynamics of this pathway and compensatory nodes. In doing so, new opportunities for exploiting diet/drug synergies are highlighted that may unlock the therapeutic potential of mTOR inhibitors as a cancer treatment. Topics: Diet; Humans; Obesity; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2022 |
The coronavirus disease 2019 (COVID-19) has affected approximately 2 million individuals worldwide; however, data regarding fatal cases have been limited.. To report the clinical features of 162 fatal cases of COVID-19 from 5 hospitals in Wuhan between December 30, 2019 and March 12, 2020.. The demographic data, signs and symptoms, clinical course, comorbidities, laboratory findings, computed tomographic (CT) scans, treatments, and complications of the patients with fatal cases were retrieved from electronic medical records.. Young patients with moderate COVID-19 without comorbidity at admission could also develop fatal outcomes. The in-hospital survival time of the fatal cases was similar among the hospitals of different levels in Wuhan. Topics: Adolescent; Adult; Animals; Asthma; Atrial Fibrillation; Autoantibodies; Biomarkers; Breast Neoplasms; Child; Conjunctivitis, Allergic; Cornea; COVID-19; Cyclosporine; Cytokines; Death, Sudden, Cardiac; Defibrillators, Implantable; Diet; Disease Models, Animal; Docetaxel; Double-Blind Method; Dry Eye Syndromes; Educational Status; Emulsions; Female; Fluorescein Angiography; Fluoresceins; Focus Groups; Heart Failure; Hemothorax; Humans; Inflammation; Keratoconus; Male; Meibomian Glands; Mice; Middle Aged; Multiple Sclerosis; Myocardial Infarction; Myocardium; Nerve Fibers; Nigeria; Obesity; Overweight; Pandemics; Primary Prevention; Prospective Studies; Qualitative Research; Registries; Retinal Ganglion Cells; Retinal Vessels; Schools; Sirolimus; Tertiary Care Centers; Th1 Cells; Th2 Cells; Tomography, Optical Coherence; Troponin I; Tumor Necrosis Factor-alpha; United States; Ventricular Remodeling | 2022 |
Cancer, obesity, diabetes, and antidiabetic drugs: is the fog clearing?
The prevalence of obesity, of type 2 diabetes mellitus (T2DM), and of cancer are all increasing globally. The relationships between these diseases are complex, and thus difficult to elucidate; nevertheless, evidence supports the hypothesis that obesity increases the risks of both T2DM and certain cancers. Further complexity arises from controversial evidence that specific drugs used in the treatment of T2DM increase or decrease cancer risk or influence cancer prognosis. Herein, we review the current evidence from studies that have addressed these relationships, and summarize the methodological challenges that are frequently encountered in such research. We also outline the physiology that links obesity, T2DM, and neoplasia. Finally, we outline the practical principles relevant to the increasingly common challenge of managing patients who have been diagnosed with both diabetes and cancer. Topics: Androgen Antagonists; Antineoplastic Agents; Diabetes Mellitus, Type 2; Global Health; Glucocorticoids; Humans; Hypoglycemic Agents; Incidence; Insulin; Neoplasms; Obesity; Prevalence; Prognosis; Risk Factors; Signal Transduction; Sirolimus; Survivors | 2017 |
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging.
The mechanistic target of rapamycin (mTOR) is a ubiquitous serine/threonine kinase, which plays pivotal roles in integrating growth signals on a cellular level. To support proliferation and survival under stress, two interacting complexes that harbor mTOR, mTORC1 and mTORC2, promote the transcription of genes involved in carbohydrate metabolism and lipogenesis, enhance protein translation, and inhibit autophagy. Although rapamycin was originally developed as an inhibitor of T cell proliferation for preventing organ transplant rejection, its molecular target, mTOR, has been subsequently identified as a central regulator of metabolic cues that drive lineage specification in the immune system. Owing to oxidative stress, the activation of mTORC1 has emerged as a central pathway for the pathogenesis of systemic lupus erythematosus and other autoimmune diseases. Paradoxically, mTORC1 has also been identified as a mediator of the Warburg effect that allows cell survival under hypoxia. Rapamycin and new classes of mTOR inhibitors are being developed to block not only transplant rejection and autoimmunity but also to treat obesity and various forms of cancer. Through preventing these diseases, personalized mTOR blockade holds promise to extend life span. Topics: Aging; Animals; Autoimmune Diseases; Biomarkers; Humans; Neoplasms; Obesity; Precision Medicine; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2015 |
Inhibition of the mTOR pathway: a possible protective role in coronary artery disease.
The main approach to obesity and type-II diabetes is to unravel the mechanisms involved in nutrient absorption and fuel allocation. In conditions of over-nutrition, cells must cope with a multitude of extracellular signals generated by changes in nutrient load, hormonal milieu, adverse cytokine/adipokine profile, and apoptosis/anti-apoptosis processes. To date studies have demonstrate that among all nutrients, lipids and carbohydrates play a major regulatory role in the gene transcription of glycolytic and lipogenic enzymes, insulin, and adipokines. These nutrients mainly exert their effects through the gene expression of sterol responsive binding protein 1 and 2 (SREBP) and the mammalian target of rapamycin (mTOR). Excess of adipose tissue is known to confer a significantly higher risk of coronary artery disease. Administration of rapamycin effectively attenuated inflammation, inhibited progression, and enhanced stability of atherosclerotic plaques in animal models. Herein we discuss the mTOR pathway and the molecular mechanisms of mTOR inhibitors, hypothesizing a possible protective role in atherosclerosis, taking into account also previous clinical studies emphasizing their opposite role. Topics: Adipose Tissue; Animals; Coronary Artery Disease; Diabetes Mellitus, Type 2; Humans; Obesity; Sirolimus; TOR Serine-Threonine Kinases | 2013 |
mTOR in aging, metabolism, and cancer.
The target of rapamycin (TOR) is a highly conserved serine/threonine kinase that is part of two structurally and functionally distinct complexes, TORC1 and TORC2. In multicellular organisms, TOR regulates cell growth and metabolism in response to nutrients, growth factors and cellular energy. Deregulation of TOR signaling alters whole body metabolism and causes age-related disease. This review describes the most recent advances in TOR signaling with a particular focus on mammalian TOR (mTOR) in metabolic tissues vis-a-vis aging, obesity, type 2 diabetes, and cancer. Topics: Aging; Animals; Cell Proliferation; Diabetes Mellitus, Type 2; Gene Deletion; Gene Expression Regulation; Humans; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Multiprotein Complexes; Neoplasms; Obesity; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2013 |
Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life.
The mammalian (or mechanistic) target of rapamycin (mTOR) is an evolutionarily conserved serine-threonine kinase that is known to sense the environmental and cellular nutrition and energy status. Diverse mitogens, growth factors, and nutrients stimulate the activation of the two mTOR complexes mTORC1 and mTORC2 to regulate diverse functions, such as cell growth, proliferation, development, memory, longevity, angiogenesis, autophagy, and innate as well as adaptive immune responses. Dysregulation of the mTOR pathway is frequently observed in various cancers and in genetic disorders, such as tuberous sclerosis complex or cystic kidney disease. In this review, I will give an overview of the current understanding of mTOR signaling and its role in diverse tissues and cells. Genetic deletion of specific mTOR pathway proteins in distinct tissues and cells broadened our understanding of the cell-specific roles of mTORC1 and mTORC2. Inhibition of mTOR is an established therapeutic principle in transplantation medicine and in cancers, such as renal cell carcinoma. Pharmacological targeting of both mTOR complexes by novel drugs potentially expand the clinical applicability and efficacy of mTOR inhibition in various disease settings. Topics: Autophagy; CD4-Positive T-Lymphocytes; Cell Proliferation; Humans; Longevity; Mechanistic Target of Rapamycin Complex 1; Multiprotein Complexes; Obesity; Pluripotent Stem Cells; Proteins; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Transcription Factors | 2012 |
Nonimmunosuppressive effects of mammalian target of rapamycin inhibitors.
Mammalian target of rapamycin (mTOR) integrates nutrient and hormonal signals involved in cell growth. Development of mTOR inhibitor drugs as therapeutic agents for major human diseases such as obesity, diabetes, atherosclerosis, or cancer will experience an important increase in the next years. The incidence of these diseases is particularly increased among organ transplant recipients being a limiting factor for transplant success. Transplant teams carry on significant experience in treating patients with mTOR inhibitors for preventing acute rejection or reducing nephrotoxicity. Preliminary data showed that these drugs are effective for reducing posttransplant malignancy. Transplant teams have the unique opportunity to analyze whether mTOR inhibitors are also effective for the prevention of cardiovascular diseases, obesity, and diabetes. Topics: Cardiovascular Diseases; Diabetes Mellitus; Graft Rejection; Humans; Immunosuppressive Agents; Obesity; Organ Transplantation; Protein Kinases; Sirolimus; TOR Serine-Threonine Kinases | 2008 |
5 trial(s) available for sirolimus and Obesity
Article | Year |
---|---|
The coronavirus disease 2019 (COVID-19) has affected approximately 2 million individuals worldwide; however, data regarding fatal cases have been limited.. To report the clinical features of 162 fatal cases of COVID-19 from 5 hospitals in Wuhan between December 30, 2019 and March 12, 2020.. The demographic data, signs and symptoms, clinical course, comorbidities, laboratory findings, computed tomographic (CT) scans, treatments, and complications of the patients with fatal cases were retrieved from electronic medical records.. Young patients with moderate COVID-19 without comorbidity at admission could also develop fatal outcomes. The in-hospital survival time of the fatal cases was similar among the hospitals of different levels in Wuhan. Topics: Adolescent; Adult; Animals; Asthma; Atrial Fibrillation; Autoantibodies; Biomarkers; Breast Neoplasms; Child; Conjunctivitis, Allergic; Cornea; COVID-19; Cyclosporine; Cytokines; Death, Sudden, Cardiac; Defibrillators, Implantable; Diet; Disease Models, Animal; Docetaxel; Double-Blind Method; Dry Eye Syndromes; Educational Status; Emulsions; Female; Fluorescein Angiography; Fluoresceins; Focus Groups; Heart Failure; Hemothorax; Humans; Inflammation; Keratoconus; Male; Meibomian Glands; Mice; Middle Aged; Multiple Sclerosis; Myocardial Infarction; Myocardium; Nerve Fibers; Nigeria; Obesity; Overweight; Pandemics; Primary Prevention; Prospective Studies; Qualitative Research; Registries; Retinal Ganglion Cells; Retinal Vessels; Schools; Sirolimus; Tertiary Care Centers; Th1 Cells; Th2 Cells; Tomography, Optical Coherence; Troponin I; Tumor Necrosis Factor-alpha; United States; Ventricular Remodeling | 2022 |
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
The impact of body mass index on the one year outcomes of patients treated by percutaneous coronary intervention with Biolimus- and Sirolimus-eluting stents (from the LEADERS Trial).
The aim of this analysis was to assess the effect of body mass index (BMI) on 1-year outcomes in patients enrolled in a contemporary percutaneous coronary intervention trial comparing a sirolimus-eluting stent with a durable polymer to a biolimus-eluting stent with a biodegradable polymer. A total of 1,707 patients who underwent percutaneous coronary intervention were randomized to treatment with either biolimus-eluting stents (n = 857) or sirolimus-eluting stents (n = 850). Patients were assigned to 1 of 3 groups according to BMI: normal (<25 kg/m(2)), overweight (25 to 30 kg/m(2)), or obese (>30 kg/m(2)). At 1 year, the incidence of the composite of cardiac death, myocardial infarction, and clinically justified target vessel revascularization was assessed. In addition, rates of clinically justified target lesion revascularization and stent thrombosis were assessed. Cox proportional-hazards analysis, adjusted for clinical differences, was used to develop models for 1-year mortality. Forty-five percent of the patients (n = 770) were overweight, 26% (n = 434) were obese, and 29% (n = 497) had normal BMIs. At 1-year follow-up, the cumulative rate of cardiac death, myocardial infarction, and clinically justified target vessel revascularization was significantly higher in the obese group (8.7% in normal-weight, 11.3% in overweight, and 14.5% in obese patients, p = 0.01). BMI (hazard ratio 1.47, 95% confidence interval 1.02 to 2.14, p = 0.04) was an independent predictor of stent thrombosis. Stent type had no impact on the composite of cardiac death, myocardial infarction, and clinically justified target vessel revascularization at 1 year in the 3 BMI groups (hazard ratio 1.08, 95% confidence interval 0.63 to 1.83, p = 0.73). In conclusion, BMI was an independent predictor of major adverse cardiac events at 1-year clinical follow-up. The higher incidence of stent thrombosis in the obese group may suggest the need for a weight-adjusted dose of clopidogrel. Topics: Aged; Angioplasty, Balloon, Coronary; Body Mass Index; Confidence Intervals; Drug-Eluting Stents; Female; Follow-Up Studies; Humans; Immunosuppressive Agents; Male; Middle Aged; Myocardial Infarction; Netherlands; Obesity; Odds Ratio; Overweight; Predictive Value of Tests; Proportional Hazards Models; Risk Factors; Sirolimus; Survival Analysis; Treatment Outcome | 2010 |
Impact of body mass index on the one-year clinical outcome of patients undergoing multivessel revascularization with sirolimus-eluting stents (from the Arterial Revascularization Therapies Study Part II).
The differential safety and efficacy profiles of sirolimus-eluting stents when implanted in patients with multivessel coronary artery disease who have increased body mass indexes (BMIs) compared with those with normal BMIs are largely unknown. This study evaluated the impact of BMI on 1-year outcomes in patients with multivessel coronary artery disease treated with sirolimus-eluting stents as part of the Arterial Revascularization Therapies Study Part II (ARTS II). From February to November 2003, 607 patients were included at 45 centers; 176 patients had normal BMIs (<25 kg/m(2)), 289 were overweight (> or =25 and < or =30 kg/m(2)), and 142 were obese (>30 kg/m(2)). At 30 days, the cumulative incidence of the primary combined end point of death, myocardial infarction, cerebrovascular accident, and repeat revascularization (major adverse cardiac and cerebrovascular events) was 3.4% in the group with normal BMIs, 3.1% in overweight patients, and 2.8% in obese patients (p = 0.76). At 1 year, the cumulative incidence of major adverse cardiac and cerebrovascular events was 10.8%, 11.8%, and 7.0% in the normal BMI, overweight, and obese groups, respectively (p = 0.31). In conclusion, BMI had no impact on 1-year clinical outcomes in patients with multivessel coronary artery disease treated with sirolimus-eluting stents in ARTS II. Topics: Adult; Aged; Aged, 80 and over; Body Mass Index; Coated Materials, Biocompatible; Coronary Disease; Europe; Female; Follow-Up Studies; Hospital Mortality; Humans; Immunosuppressive Agents; Incidence; Male; Middle Aged; Myocardial Revascularization; Obesity; Retrospective Studies; Risk Factors; Sirolimus; Stents; Stroke; Survival Rate; Time Factors; Treatment Outcome; United States | 2008 |
Sirolimus as primary immunosuppression in liver transplantation is not associated with hepatic artery or wound complications.
Sirolimus is a new immunosuppressive agent increasingly being used in liver transplant recipients. There is concern that sirolimus may be associated with wound complications and hepatic artery thrombosis (HAT). We have used sirolimus as primary immunosuppression in 170 liver transplant recipients and therefore reviewed our experience with wound complications and HAT in our cohort of patients. Records of all 170 patients administered sirolimus as primary immunosuppression and 180 historic controls were reviewed. Numbers of wound and hepatic artery complications were recorded, as well as the prevalence of obesity, reoperation, diabetes, and OKT3 use, all of which are risk factors for wound complications. The prevalence of wound complications was 12.4% in sirolimus-treated patients compared with 13.9% in historic controls (P = not significant [NS]). The prevalence of hepatic artery complications was 5.3% in sirolimus-treated patients compared with 8.3% in historic controls (P = NS). The prevalence of obesity and OKT3 administration was significantly lower in sirolimus-treated patients. Multivariate analysis failed to show an association between sirolimus therapy and hepatic artery or wound complications. The prevalence of wound and hepatic artery complications is not different in liver transplant recipients administered sirolimus as part of a primary immunosuppressive regimen compared with historic controls. Topics: Cohort Studies; Diabetes Mellitus; Female; Graft Rejection; Hepatic Artery; Humans; Immunosuppressive Agents; Liver Transplantation; Male; Middle Aged; Multivariate Analysis; Muromonab-CD3; Obesity; Postoperative Complications; Prevalence; Reoperation; Risk Factors; Sirolimus | 2003 |
58 other study(ies) available for sirolimus and Obesity
Article | Year |
---|---|
Impact of different immunosuppressive protocols on clinical outcomes in obese kidney transplant recipients: a propensity score-matched analysis.
Although obesity has become a significant problem in transplantation medicine, the impact of different immunosuppressive protocols on clinical outcomes in obese transplant recipients remains unclear.. We performed an analysis of the Scientific Registry of Transplant Recipients database. Kidney transplant recipients were categorized according to body mass index (BMI) categories and immunosuppressive protocols: (i) tacrolimus/mycophenolate mofetil (Tac-MMF), (ii) mTOR-inhibitor/Tac (mTORi-Tac), (iii) mTORi/cyclosporin (mTORi-Cyc) and (iv) mTORi-MMF.. Graft recipients with advanced obesity (BMI ≥35 kg/m2) exhibited significantly lower rates of acute rejection during the first year after transplantation in the mTORi-Tac (6.4%) group compared with Tac-MMF (11.2%). Obesity class 1 (30 < BMI < 35 kg/m2) was associated with a significant risk of acute rejection for the mTORi-Tac group [obesity class 1 hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.21-2.62, P = .003]. A similar trend was observed in the Tac-MMF group for advanced obesity HR 1.29; 95% CI 0.96-1.73, P = .087). For the Tac-MMF group, recipients with both overweight and obesity had significantly impaired survival due to cardiovascular events and also increased mortality due to infection in advanced obesity. Combination of mTORi and calcineurin inhibitor was associated with lower rejection rates and stable long-term kidney function while reducing cardiovascular side effects linked to calcineurin inhibitors in obese kidney graft recipients.. These results are critical for the growing number of obese graft recipients and warrant prospective evaluation. Topics: Calcineurin Inhibitors; Drug Therapy, Combination; Graft Rejection; Graft Survival; Humans; Immunosuppressive Agents; Kidney Transplantation; Mycophenolic Acid; Obesity; Propensity Score; Sirolimus; Tacrolimus; Transplant Recipients | 2023 |
Age-related changes to adipose tissue and peripheral neuropathy in genetically diverse HET3 mice differ by sex and are not mitigated by rapamycin longevity treatment.
Neural communication between the brain and adipose tissues regulates energy expenditure and metabolism through modulation of adipose tissue functions. We have recently demonstrated that under pathophysiological conditions (obesity, diabetes, and aging), total subcutaneous white adipose tissue (scWAT) innervation is decreased ('adipose neuropathy'). With advanced age in the C57BL/6J mouse, small fiber peripheral nerve endings in adipose tissue die back, resulting in reduced contact with adipose-resident blood vessels and other cells. This vascular neuropathy and parenchymal neuropathy together likely pose a physiological challenge for tissue function. In the current work, we used the genetically diverse HET3 mouse model to investigate the incidence of peripheral neuropathy and adipose tissue dysregulation across several ages in both male and female mice. We also investigated the anti-aging treatment rapamycin, an mTOR inhibitor, as a means to prevent or reduce adipose neuropathy. We found that HET3 mice displayed a reduced neuropathy phenotype compared to inbred C56BL/6 J mice, indicating genetic contributions to this aging phenotype. Compared to female HET3 mice, male HET3 mice had worse neuropathic phenotypes by 62 weeks of age. Female HET3 mice appeared to have increased protection from neuropathy until advanced age (126 weeks), after reproductive senescence. We found that rapamycin overall had little impact on neuropathy measures, and actually worsened adipose tissue inflammation and fibrosis. Despite its success as a longevity treatment in mice, higher doses and longer delivery paradigms for rapamycin may lead to a disconnect between life span and beneficial health outcomes. Topics: Adipose Tissue; Animals; Female; Longevity; Male; Mice; Mice, Inbred C57BL; Obesity; Peripheral Nervous System Diseases; Sirolimus | 2023 |
Fibro-adipose vascular anomaly (FAVA) - diagnosis, staging and management.
The diagnosis and treatment of fibro-adipose vascular anomaly (FAVA) of the limb remains challenging since this entity is rare and complex. This paper is aimed to describe the clinical and imaging features, staging and management of this underrecognized disease of the limb.. Patients diagnosed with FAVA and managed between September 2019 and May 2022 in department of pediatric surgery & vascular anomalies of Xi'an international medical center hospital were retrospectively reviewed. Data extracted include age at presentation, previous diagnosis, affected muscles, symptoms, previous treatment, our management, and follow-up.. Thirty-two patients with FAVA were diagnosed and managed in our center. There was a female sex predominance, with 23 female (72%) and 9 male (28%) in the cohort. Only one lesion was noticed during infancy; the remaining presented at age 1 to 20 years (median, 7 years). The most commonly involved muscles were gastrocnemius (14/32, 44%) and soleus (13/32, 40%). Swelling (mass), pain and contractures were the most common presentations. MRI featured a heterogeneous and ill-defined intramuscular high signal intensity. Diseases were staged according to clinical features: stage I (pain stage, n = 4), stage II (contracture stage, n = 20) and stage III (deformity stage, n = 8). Patients with stage I disease underwent radical resection and obtained a cure. Patients with stage II disease received radical resection and possible Achilles lengthening, having an outcome of cure. Personalized treatment was required in patients with stage III disease, including radical/partial/staged resection, Achilles lengthening/tenotomy, joint capsulotomy, neurolysis/neurectomy, tendon transfer, stretching exercises, and oral sirolimus/alpelisib. Significant improvement of symptoms was achieved in most.. The most distinct features of FAVA include enlarging mass, severe pain and contracture. Based on distinct clinical and radiologic features, it is not difficult to make the diagnosis of FAVA. Earlier awareness of this disease can reduce misdiagnoses. Surgery-based comprehensive management can typically improve pain and contracture. Oral sirolimus or alpelisib plays an important role in treatment of unresectable lesions and major nerve involvement. Surgery alone can be curative in early stage FAVA. Topics: Adolescent; Adult; Child; Child, Preschool; Contracture; Female; Humans; Infant; Male; Obesity; Pain; Retrospective Studies; Sirolimus; Treatment Outcome; Vascular Malformations; Young Adult | 2023 |
High fat diet-induced obesity leads to depressive and anxiety-like behaviors in mice via AMPK/mTOR-mediated autophagy.
Depression is one of the most common mental illnesses in modern society. In recent years, several studies show that there are disturbances in lipid metabolism in depressed patients. High-fat diet may lead to anxiety and depression, but the mechanisms involved remain unclear. In our study, we found that 8 weeks of high-fat feeding effectively induced metabolic disorders, including obesity and hyperlipidemia in mice. Interestingly, the mice also showed depressive and anxiety-like behaviors. We further found activated microglia and astrocyte, increased neuroinflammation, decreased autophagy and BDNF levels in mice after high-fat feeding. Besides, high-fat feeding can also inhibit AMPK phosphorylation and induce mTOR phosphorylation. After treating with the mTOR inhibitor rapamycin, autophagy and BDNF levels were elevated. The number of activated microglia and astrocyte, and pro-inflammation levels were reduced. Besides, rapamycin can also reduce the body weight and serum lipid level in high fat feeding mice. Depressive and anxiety-like behaviors were also ameliorated to some extent after rapamycin treatment. In summary, these results suggest that high-fat diet-induced obesity may lead to depressive and anxiety-like behaviors in mice by inhibiting AMPK phosphorylation and promoting mTOR shift to phosphorylation to inhibit autophagy. Therefore, improving lipid metabolism or enhancing autophagy through the AMPK/mTOR pathway could be potential targets for the treatment of obesity depression. Topics: AMP-Activated Protein Kinases; Animals; Anxiety; Autophagy; Body Weight; Depression; Diet, High-Fat; Lipid Metabolism; Male; Maze Learning; Mice; Mice, Inbred C57BL; Obesity; Sirolimus; TOR Serine-Threonine Kinases | 2022 |
TBK1-mTOR Signaling Attenuates Obesity-Linked Hyperglycemia and Insulin Resistance.
The innate immune kinase TBK1 (TANK-binding kinase 1) responds to microbial-derived signals to initiate responses against viral and bacterial pathogens. More recent work implicates TBK1 in metabolism and tumorigenesis. The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental cues to control fundamental cellular processes. Our prior work demonstrated in cells that TBK1 phosphorylates mTOR (on S2159) to increase mTORC1 and mTORC2 catalytic activity and signaling. Here we investigate a role for TBK1-mTOR signaling in control of glucose metabolism in vivo. We find that mice with diet-induced obesity (DIO) but not lean mice bearing a whole-body "TBK1-resistant" Mtor S2159A knock-in allele (MtorA/A) display exacerbated hyperglycemia and systemic insulin resistance with no change in energy balance. Mechanistically, Mtor S2159A knock-in in DIO mice reduces mTORC1 and mTORC2 signaling in response to insulin and innate immune agonists, reduces anti-inflammatory gene expression in adipose tissue, and blunts anti-inflammatory macrophage M2 polarization, phenotypes shared by mice with tissue-specific inactivation of TBK1 or mTOR complexes. Tissues from DIO mice display elevated TBK1 activity and mTOR S2159 phosphorylation relative to lean mice. We propose a model whereby obesity-associated signals increase TBK1 activity and mTOR phosphorylation, which boost mTORC1 and mTORC2 signaling in parallel to the insulin pathway, thereby attenuating insulin resistance to improve glycemic control during diet-induced obesity. Topics: Animals; Glucose; Hyperglycemia; Insulin; Insulin Resistance; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Mice; Mice, Obese; Multiprotein Complexes; Obesity; Protein Serine-Threonine Kinases; Sirolimus; TOR Serine-Threonine Kinases | 2022 |
FAM96A is essential for maintaining organismal energy balance and adipose tissue homeostasis in mice.
The iron (Fe) metabolism plays important role in regulating systemic metabolism and obesity development. The Fe inside cells can form iron-sulfur (Fe-S) clusters, which are usually assembled into target proteins with the help of a conserved cluster assembly machinery. Family with sequence similarity 96A (FAM96A; also designated CIAO2A) is a cytosolic Fe-S assembly protein involved in the regulation of cellular Fe homeostasis. However, the biological function of FAM96A in vivo is still incompletely defined. Here, we tested the role of FAM96A in regulating organismal Fe metabolism, which is relevant to obesity and adipose tissue homeostasis. We found that in mice genetically lacking FAM96A globally, intracellular Fe homeostasis was interrupted in both white and brown adipocytes, but the systemic Fe level was normal. FAM96A deficiency led to adipocyte hypertrophy and organismal energy expenditure reduction even under nonobesogenic normal chow diet-fed conditions. Mechanistically, FAM96A deficiency promoted mechanistic target of rapamycin (mTOR) signaling in adipocytes, leading to an elevation of de novo lipogenesis and, therefore, fat mass accumulation. Furthermore, it also caused mitochondrial defects, including defects in mitochondrial number, ultrastructure, redox activity, and metabolic function in brown adipocytes, which are known to be critical for the control of energy balance. Moreover, adipocyte-selective FAM96A knockout partially phenocopied global FAM96A deficiency with adipocyte hypertrophy and organismal energy expenditure defects but the mice were resistant to high-fat diet-induced weight gain. Thus, FAM96A in adipocytes may autonomously act as a critical gatekeeper of organismal energy balance by coupling Fe metabolism to adipose tissue homeostasis. Topics: Adipose Tissue; Adipose Tissue, Brown; Animals; Carrier Proteins; Diet, High-Fat; Energy Metabolism; Homeostasis; Hypertrophy; Iron; Mice; Mice, Inbred C57BL; Mice, Knockout; Obesity; Sirolimus; Sulfur; TOR Serine-Threonine Kinases | 2022 |
Human monocyte-derived macrophage responses to M. tuberculosis differ by the host's tuberculosis, diabetes or obesity status, and are enhanced by rapamycin.
Human macrophages play a major role in controlling tuberculosis (TB), but their anti-mycobacterial mechanisms remain unclear among individuals with metabolic alterations like obesity (TB protective) or diabetes (TB risk). To help discern this, we aimed to: i) Evaluate the impact of the host's TB status or their comorbidities on the anti-mycobacterial responses of their monocyte-derived macrophages (MDMs), and ii) determine if the autophagy inducer rapamycin, can enhance these responses. We used MDMs from newly diagnosed TB patients, their close contacts and unexposed controls. The MDMs from TB patients had a reduced capacity to activate T cells (surrogate for antigen presentation) or kill M. tuberculosis (Mtb) when compared to non-TB controls. The MDMs from obese participants had a higher antigen presenting capacity, whereas those from chronic diabetes patients displayed lower Mtb killing. The activation of MDMs with rapamycin led to an enhanced anti-mycobacterial activity irrespective of TB status but was not as effective in patients with diabetes. Further studies are warranted using MDMs from TB patients with or without metabolic comorbidities to: i) elucidate the mechanisms through which host factors affect Mtb responses, and ii) evaluate host directed therapy using autophagy-inducing drugs like rapamycin to enhance macrophage function. Topics: Adolescent; Adult; Anti-Bacterial Agents; Autophagy; Cross-Sectional Studies; Diabetes Mellitus; Female; Humans; Macrophages; Male; Middle Aged; Mycobacterium tuberculosis; Obesity; Sirolimus; Tuberculosis; Young Adult | 2021 |
Rapamycin delays allograft rejection in obese graft recipients through induction of myeloid-derived suppressor cells.
Obesity has become a relevant problem in transplantation medicine with steadily increasing numbers of obese graft recipients. However, the effect of immunomodulatory drugs on transplant-related outcomes among obese patients are unknown. Therefore, we evaluated the impact of rapamycin on allograft rejection and alloimmune response in a murine model of diet-induced obesity and fully-mismatched skin transplantation. Rapamycin significantly delayed allograft rejection in obese recipient mice compared to treated lean mice (14.5 days vs. 10.7 days, p = 0.005). Treatment with rapamycin increased frequencies of monocytic myeloid-derived suppressor cells (M-MDSCs), augmented the immunosuppressive activity of M-MDSCs on T cells through indoleamine 2,3-dioxygenase pathway and shifted CD4 Topics: Allografts; Animals; Biomarkers; Cytokines; Disease Models, Animal; Disease Susceptibility; Gene Expression; Graft Rejection; Immune Tolerance; Immunomodulation; Immunophenotyping; Immunosuppressive Agents; Mice; Myeloid-Derived Suppressor Cells; Obesity; Sirolimus; Skin Transplantation; T-Lymphocyte Subsets; Transplant Recipients | 2021 |
Fatty acids suppress the steroidogenesis of the MA-10 mouse Leydig cell line by downregulating CYP11A1 and inhibiting late-stage autophagy.
Obese men have lower circulating testosterone than men with an optimal body mass index. Elevated fatty acids (FAs) caused by obesity have been reported to suppress the steroidogenesis of Leydig cells. Recent studies have demonstrated that autophagy regulates steroidogenesis in endocrine cells; however, few studies have investigated the molecular mechanisms of FA-impaired steroidogenesis. To study FA regulation in the steroidogenesis of Leydig cells, MA-10 cells were treated with an FA mixture and co-treated with 8-Br-cAMP to stimulate the steroidogenesis capacity. We showed that FAs led to cellular lipid accumulation and decreased steroidogenesis of MA-10 cells, and FA-suppressed steroidogenesis was largely recovered by P5 treatment but not by 22R-OHC treatment, suggesting the primary defect was the deficiency of CYP11A1. To examine the involvement of autophagy in the steroidogenesis of Leydig cells, we treated MA-10 cells with autophagy regulators, including rapamycin, bafilomycin, and chloroquine. Inhibition of late-stage autophagy including FA-upregulated Rubicon suppressed the steroidogenesis of MA-10 cells. More interestingly, Rubicon played a novel regulatory role in the steroidogenesis of MA-10 cells, independent of inhibitors of late-stage autophagy. Collectively, this study provides novel targets to investigate the interaction between FAs and steroidogenesis in steroidogenic cells. Topics: Animals; Autophagy; Chloroquine; Cholesterol Side-Chain Cleavage Enzyme; Endocrine Cells; Fatty Acids; Gene Expression Regulation; Humans; Leydig Cells; Lipids; Macrolides; Male; Mice; Obesity; Sirolimus; Steroids | 2021 |
Metformin rescues rapamycin-induced mitochondrial dysfunction and attenuates rheumatoid arthritis with metabolic syndrome.
Rapamycin, an inhibitor of the serine/threonine protein kinase mTOR, is an immunosuppressant used to treat renal transplant recipients, but it can cause endothelial and mitochondrial dysfunction. Metformin is used for the treatment of type 2 diabetes and was reported to exert therapeutic effects against rheumatoid arthritis and obesity by improving mitochondrial dysfunction via the activation of fibroblast growth factor 21. We investigated the therapeutic effects of rapamycin-metformin combination therapy in obese mice with collagen-induced arthritis (CIA).. Mouse embryonic fibroblasts were treated with rapamycin, metformin, or rapamycin-metformin, and their respiratory level and mitochondrial gene expression were assayed. Mice were fed a high-fat diet, immunized with type II collagen, and subsequently treated with rapamycin-metformin daily for 10 weeks.. Rapamycin-treated cells exhibited dysfunction of mitochondrial respiration and decreased mitochondrial gene expression compared with rapamycin-metformin-treated cells. Moreover, rapamycin-metformin reduced the clinical arthritis score and the extent of histological inflammation and improved the metabolic profile in obese mice with CIA. Rapamycin-metformin enhanced the balance between T helper 17 and regulatory T cells in vitro and in vivo.. These results suggest that rapamycin-metformin is a potential therapeutic option for autoimmune arthritis. Topics: Animals; Arthritis, Experimental; Arthritis, Rheumatoid; Drug Therapy, Combination; Hypoglycemic Agents; Immunosuppressive Agents; Metabolic Syndrome; Metformin; Mice; Mitochondria; Obesity; Sirolimus | 2020 |
Relation Between Wound Complication and Lymphocele After Kidney Transplantation: A Monocentric Study.
Wound complication frequently arises after kidney transplantation and its risk factors are well known. In a previous paper we analyzed these factors, and in this new retrospective study we evaluate the influence of lymphocele in the development of wound complications.. From January 2000 to December 2018, 731 consecutive kidney transplants have been performed in our center. We have analyzed the incidence of wound complication and lymphocele and their risk factors.. Out of 731 kidney transplants, we have observed wound complications in 115 patients (15.7%) and lymphocele in 158 patients (21.7%). Of these, 70 patients developed both complications (9.5%), but 6 patients have been excluded because they were in therapy with mammalian target of rapamycin inhibitors. Twenty-nine patients (45.3%) presented a first level and 35 patients (54.7%) showed second level wound complications. Lymphocele was the only present factor in just 3 cases (4.6%). The other patients showed diabetes in 28 cases (43.7%), overweight/obesity in 38 (59.3%), delayed graft function in 17 (26.5%), and 60 years or more in 38 (57.8%). The association has been found in 30 out 64 patients treated with tacrolimus (46.8%) and in 34 with cyclosporine (53.1%); 40 patients did not receive muscular layer's reconstruction (62.5%).. Our experience shows that lymphocele alone is not a predisposing factor for wound dehiscence after kidney transplantation, and they often coexist because they share the same risk factors, the most important being obesity, diabetes and delayed graft function, older age, and surgical techniques. No relation has been observed with calcineurin inhibitor therapy. Topics: Adult; Aged; Cyclosporine; Delayed Graft Function; Diabetes Complications; Female; Humans; Immunosuppressive Agents; Incidence; Kidney Transplantation; Lymphocele; Male; Middle Aged; Obesity; Retrospective Studies; Risk Factors; Sirolimus; Surgical Wound Dehiscence; Tacrolimus | 2020 |
Role of exercise and rapamycin on the expression of energy metabolism genes in liver tissues of rats fed a high‑fat diet.
The mTOR pathway serves an important role in the development of insulin resistance induced by obesity. Exercise improves obesity‑associated insulin resistance and hepatic energy metabolism; however, the precise mechanism of this process remains unknown. Therefore, the present study investigated the role of rapamycin, an inhibitor of mTOR, on exercise‑induced expression of hepatic energy metabolism genes in rats fed a high‑fat diet (HFD). A total of 30 male rats were divided into the following groups: Normal group (n=6) fed chow diets and HFD group (n=24) fed an HFD for 6 weeks. The HFD rats performed exercise adaptation for 1 week and were randomly divided into the four following groups (each containing six rats): i) Group of HFD rats with sedentary (H group); ii) group of HFD rats with exercise (HE group); iii) group of HFD rats with rapamycin (HR group); and iv) group of HFD rats with exercise and rapamycin (HER group). Both HE and HER rats were placed on incremental treadmill training for 4 weeks (from week 8‑11). Both HR and HER rats were injected with rapamycin intraperitoneally at the dose of 2 mg/kg once a day for 2 weeks (from week 10‑11). All rats were sacrificed following a 12‑16 h fasting period at the end of week 11. The levels of mitochondrial and oxidative enzyme activities, as well as of the expression of genes involved in energy metabolism were assessed in liver tissues. Biochemical assays and oil red staining were used to assess the content of hepatic triglycerides (TGs). The results indicated that exercise, but not rapamycin, reduced TG content in the liver of HFD rats. Further analysis indicated that rapamycin reduced the activity of cytochrome c oxidase, but not the activities of succinate dehydrogenase and β‑hydroxyacyl‑CoA dehydrogenase in the liver of HFD rats. Exercise significantly upregulated the mRNA expression of peroxisome proliferator‑activated receptor γ coactivator 1 β, while rapamycin exhibited no effect on the mRNA expression levels of hepatic transcription factors associated with energy metabolism enzymes in the liver of HFD rats. Collectively, the results indicated that exercise reduced TG content and upregulated mitochondrial metabolic gene expression in the liver of HFD rats. Moreover, this mechanism may not involve the mTOR pathway. Topics: Animals; Diet, High-Fat; Energy Metabolism; Exercise Test; Gene Expression; Insulin Resistance; Liver; Male; Mitochondria; Obesity; Physical Conditioning, Animal; Rats; Rats, Sprague-Dawley; Running; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Triglycerides | 2020 |
A 2-Min Transient Ischemia Confers Cerebral Ischemic Tolerance in Non-Obese Gerbils, but Results in Neuronal Death in Obese Gerbils by Increasing Abnormal mTOR Activation-Mediated Oxidative Stress and Neuroinflammation.
A brief episode of transient ischemia (TI) can confer cerebral ischemic tolerance against a subsequent severer TI under standard condition. The brain under obesity's conditions is more sensitive to ischemic injury. However, the impact of a brief episode of TI under obesity's conditions has not been fully addressed yet. Thus, the objective of this study was to determine the effect of a brief TI in the hippocampus of high-fat diet (HFD)-induced obese gerbils and related mechanisms. Gerbils were maintained on HFD or normal diet (ND) for 12 weeks and subjected to 2 min TI. HFD gerbils were heavier, with higher blood glucose, serum total cholesterol, triglycerides, and leptin levels. Massive loss of pyramidal neurons occurred in the hippocampal cornu ammonis 1 (CA1) field of HFD animals at 5 days after 2 min of TI, but 2 min of TI did not elicit death of pyramidal neurons in ND gerbils. The HFD group showed significantly increased levels of oxidative stress indicators (dihydroethidium and 4-hydroxynonenal) and proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) and microglial activation in pre- and/or post-ischemic phases compared to the ND group. Levels of mammalian target of rapamycin (mTOR) and phosphorylated-mTOR in the CA1 field of the HFD group were also significantly higher than the ND group. On the other hand, inhibition of mTOR activation by rapamycin (an allosteric mTOR inhibitor) significantly attenuated neuronal death induced by HFD, showing reduction of HFD-induced increases of oxidative stress indicators and proinflammatory cytokines, and microglia activation. Taken together, a brief episode of TI can evoke neuronal death under obesity's conditions. It might be closely associated with an abnormal increase of mTOR activation-mediated, severe oxidative stress and neuroinflammation in pre- and/or post-ischemic phases. Topics: Animals; Case-Control Studies; Cell Death; Diet, High-Fat; Disease Models, Animal; Gerbillinae; Hippocampus; Interleukin-1beta; Ischemic Attack, Transient; Male; Neurons; Obesity; Oxidative Stress; Phosphorylation; Sirolimus; TOR Serine-Threonine Kinases; Tumor Necrosis Factor-alpha; Up-Regulation | 2019 |
Anti-inflammatory microRNA-146a protects mice from diet-induced metabolic disease.
Identifying regulatory mechanisms that influence inflammation in metabolic tissues is critical for developing novel metabolic disease treatments. Here, we investigated the role of microRNA-146a (miR-146a) during diet-induced obesity in mice. miR-146a is reduced in obese and type 2 diabetic patients and our results reveal that miR-146a-/- mice fed a high-fat diet (HFD) have exaggerated weight gain, increased adiposity, hepatosteatosis, and dysregulated blood glucose levels compared to wild-type controls. Pro-inflammatory genes and NF-κB activation increase in miR-146a-/- mice, indicating a role for this miRNA in regulating inflammatory pathways. RNA-sequencing of adipose tissue macrophages demonstrated a role for miR-146a in regulating both inflammation and cellular metabolism, including the mTOR pathway, during obesity. Further, we demonstrate that miR-146a regulates inflammation, cellular respiration and glycolysis in macrophages through a mechanism involving its direct target Traf6. Finally, we found that administration of rapamycin, an inhibitor of mTOR, was able to rescue the obesity phenotype in miR-146a-/- mice. Altogether, our study provides evidence that miR-146a represses inflammation and diet-induced obesity and regulates metabolic processes at the cellular and organismal levels, demonstrating how the combination of diet and miRNA genetics influences obesity and diabetic phenotypes. Topics: Animals; Blood Glucose; Diet, High-Fat; Disease Models, Animal; Female; Gene Expression; Humans; Hyperglycemia; Inflammation; Insulin; Intra-Abdominal Fat; Macrophages; Male; Metabolic Diseases; Mice; Mice, Inbred C57BL; Mice, Knockout; MicroRNAs; NF-kappa B; Obesity; Proto-Oncogene Proteins c-akt; Sirolimus; TOR Serine-Threonine Kinases; Weight Gain | 2019 |
SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms.
Pharmacologic inhibition of the renal sodium/glucose cotransporter-2 induces glycosuria and reduces glycemia. Given that SGLT2 inhibitors (SGLT2i) reduce mortality and cardiovascular risk in type 2 diabetes, improved understanding of molecular mechanisms mediating these metabolic effects is required. Treatment of obese but nondiabetic mice with the SGLT2i canagliflozin (CANA) reduces adiposity, improves glucose tolerance despite reduced plasma insulin, increases plasma ketones, and improves plasma lipid profiles. Utilizing an integrated transcriptomic-metabolomics approach, we demonstrate that CANA modulates key nutrient-sensing pathways, with activation of 5' AMP-activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin (mTOR), independent of insulin or glucagon sensitivity or signaling. Moreover, CANA induces transcriptional reprogramming to activate catabolic pathways, increase fatty acid oxidation, reduce hepatic steatosis and diacylglycerol content, and increase hepatic and plasma levels of FGF21. Given that these phenotypes mirror the effects of FGF21 to promote lipid oxidation, ketogenesis, and reduction in adiposity, we hypothesized that FGF21 is required for CANA action. Using FGF21-null mice, we demonstrate that FGF21 is not required for SGLT2i-mediated induction of lipid oxidation and ketogenesis but is required for reduction in fat mass and activation of lipolysis. Taken together, these data demonstrate that SGLT2 inhibition triggers a fasting-like transcriptional and metabolic paradigm but requires FGF21 for reduction in adiposity. Topics: Adiposity; AMP-Activated Protein Kinases; Animals; Blood Glucose; Canagliflozin; Cellular Reprogramming; Diabetes Mellitus, Type 2; Diglycerides; Energy Metabolism; Fasting; Fatty Liver; Fibroblast Growth Factors; Insulin; Ketones; Lipid Metabolism; Lipids; Liver; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Obesity; Signal Transduction; Sirolimus; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors | 2019 |
The subunit assembly state of the Mediator complex is nutrient-regulated and is dysregulated in a genetic model of insulin resistance and obesity.
The Mediator complex plays a critical role in the regulation of transcription by linking transcription factors to RNA polymerase II. By examining mouse livers, we have found that in the fasted state, the Mediator complex exists primarily as an approximately 1.2-MDa complex, consistent with the size of the large Mediator complex, whereas following feeding, it converts to an approximately 600-kDa complex, consistent with the size of the core Mediator complex. This dynamic change is due to the dissociation and degradation of the kinase module that includes the MED13, MED12, cyclin-dependent kinase 8 (CDK8), and cyclin C (CCNC) subunits. The dissociation and degradation of the kinase module are dependent upon nutrient activation of mTORC1 that is necessary for the induction of lipogenic gene expression because pharmacological or genetic inhibition of mTORC1 in the fed state restores the kinase module. The degradation but not dissociation of the kinase module depends upon the E3 ligase, SCF Topics: Animals; Cell Nucleus; Cyclin C; Cyclin-Dependent Kinase 8; Insulin Resistance; Liver; Male; Mechanistic Target of Rapamycin Complex 1; Mediator Complex; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Obese; Nutrients; Obesity; Protein Subunits; Signal Transduction; Sirolimus; SKP Cullin F-Box Protein Ligases | 2019 |
The mystery of the ketogenic diet: benevolent pseudo-diabetes.
Designed a century ago to treat epilepsy, the ketogenic diet (KD) is also effective against obesity and diabetes. Paradoxically, some studies in rodents have found that the KD seemingly causes diabetes, contradicting solid clinical data in humans. This paradox can be resolved by applying the concept of starvation pseudo-diabetes, which was discovered in starved animals almost two centuries ago, and has also been observed in some rapamycin-treated rodents. Intriguingly, use of the KD and rapamycin is indicated for a similar spectrum of diseases, including Alzheimer's disease and cancer. Even more intriguingly, benevolent (starvation) pseudo-diabetes may counteract type 2 diabetes or its complications. Topics: Aging; Animals; Diabetes Mellitus, Type 2; Diet, Ketogenic; Fasting; Humans; Insulin Resistance; Ketosis; Mice; Obesity; Sirolimus; Starvation | 2019 |
Glucagon-like peptide-1 analog prevents obesity-related glomerulopathy by inhibiting excessive autophagy in podocytes.
To investigate the role of glucagon-like peptide-1 analog (GLP-1) in high-fat diet-induced obesity-related glomerulopathy (ORG). Male C57BL/6 mice fed a high-fat diet for 12 wk were treated with GLP-1 (200 μg/kg) or 0.9% saline for 4 wk. Fasting blood glucose and insulin and the expression of podocin, nephrin, phosphoinositide 3-kinase (PI3K), glucose transporter type (Glut4), and microtubule-associated protein 1A/1B-light chain 3 (LC3) were assayed. Glomerular morphology and podocyte foot structure were evaluated by periodic acid-Schiff staining and electron microscopy. Podocytes were treated with 150 nM GLP-1 and incubated with 400 μM palmitic acid (PA) for 12 h. The effect on autophagy was assessed by podocyte-specific Glut4 siRNA. Insulin resistance and autophagy were assayed by immunofluorescence and Western blotting. The high-fat diet resulted in weight gain, ectopic glomerular lipid accumulation, increased insulin resistance, and fusion of podophyte foot processes. The decreased translocation of Glut4 to the plasma membrane and excess autophagy seen in mice fed a high-fat diet and in PA-treated cultured podocytes were attenuated by GLP-1. Podocyte-specific Glut4 siRNA promoted autophagy, and rapamycin-enhanced autophagy worsened the podocyte injury caused by PA. Excess autophagy in podocytes was induced by inhibition of Glut4 translocation to the plasma membrane and was involved in the pathology of ORG. GLP-1 restored insulin sensitivity and ameliorated renal injury by decreasing the level of autophagy. Topics: Animals; Autophagy; Blood Glucose; Cell Line; Cytoprotection; Diet, High-Fat; Disease Models, Animal; Glucagon-Like Peptide 1; Glucose Transporter Type 4; Insulin; Insulin Resistance; Kidney Diseases; Male; Mice, Inbred C57BL; Obesity; Palmitic Acid; Podocytes; Protein Transport; Signal Transduction; Sirolimus | 2018 |
New-Onset Diabetes and Preexisting Diabetes Are Associated With Comparable Reduction in Long-Term Survival After Liver Transplant: A Machine Learning Approach.
To identify key predictors and survival outcomes of new-onset diabetes after transplant (NODAT) in liver transplant (LT) recipients by using the Scientific Registry of Transplant Recipients.. Data of all adult LT recipients between October 1, 1987, and March 31, 2016, were analyzed using various machine learning methods. These data were divided into training (70%) and validation (30%) data sets to robustly determine predictors of NODAT. The long-term survival of patients with NODAT relative to transplant recipients with preexisting diabetes and those without diabetes was assessed.. Increasing age (odds ratio [OR], 1.01; 95% CI, 1.00-1.02; P≤.001), male sex (OR, 1.09; 95% CI, 1.05-1.13; P=.03), and obesity (OR, 1.13; 95% CI, 1.08-1.18; P<.001) were significantly associated with NODAT. Sirolimus as a primary immunosuppressant carried a 33% higher risk of NODAT than did tacrolimus (OR, 1.33; 95% CI, 1.22-1.45; P<.001) at 1 year after LT. Patients with NODAT had significantly decreased 10-year survival than did those without diabetes (63.0% vs 74.9%; P<.001), similar to survival in patients with diabetes before LT (58.9%).. Using a machine learning approach, we found that older, male, and obese recipients are at especially higher risk of NODAT. Donor features do not affect risk. In addition, sirolimus-based immunosuppression is associated with a significantly higher risk of NODAT than other immunosuppressants. Most importantly, NODAT adversely affects long-term survival after LT in a manner similar to preexisting diabetes, indicating the need for more aggressive care and closer follow-up. Topics: Adult; Age Factors; Algorithms; Cross-Sectional Studies; Diabetes Mellitus; Female; Humans; Immunosuppressive Agents; Liver Transplantation; Machine Learning; Male; Middle Aged; Obesity; Risk Factors; Sex Factors; Sirolimus; Tissue Donors; United States | 2018 |
Tetrahydroxystilbene Glycoside Improves Microvascular Endothelial Dysfunction and Ameliorates Obesity-Associated Hypertension in Obese ZDF Rats Via Inhibition of Endothelial Autophagy.
Obesity is a major risk for hypertension. Endothelial dysfunction contributes to increased peripheral vascular resistance and subsequent hypertension. Autophagy regulates endothelial function, however, whether autophagy is related to hypertension in obesity remains largely unclear. We wished to ascertain: (i) the role of autophagy in obesity-induced hypertension and the underlying mechanisms; (ii) if tetrahydroxystilbene glycoside (TSG) influences endothelial dysfunction and obesity-associated hypertension.. (TSG-treated) male Zucker diabetic fatty (ZDF) rats and cultured human umbilical vein endothelial cells (HUVECs) were used. Blood pressure was measured non-invasively with a tail-cuff system. Westernblotting was performed to determine the expression of autophagy-associated proteins. Autophagy flux was assessed by transfection HUVECs with the Ad-mGFP-RFP-LC3.. Compared with their lean counterparts, obese ZDF rats exhibited hypertension and endothelial dysfunction, along with impaired Akt/mTOR signaling and upregulated expression of autophagy-associated proteins beclin1, microtubule-associated protein 1 light chain 3 II/I, autophagy protein (ATG)5 and ATG7. Two-week TSG administration restored blood pressure and endothelial function, reactivated Akt/mTOR pathway and decreased endothelial autophagy in ZDF rats. Rapamycin pretreatment blocked the hypotensive effect of TSG in ZDF rats. Suppression of Akt/mTOR expression with siRNA significantly blunted the anti-autophagic effect of TSG in HUVECs as evidenced by abnormal autophagic flux and increased expression of autophagy-associated proteins.. Endothelial dysfunction in ZDF rats is partially attributable to excessive autophagy. TSG improves endothelial function and exerts hypotensive effects via regulation of endothelial autophagy. Topics: Animals; Apoptosis; Autophagy; Blood Pressure; Glycosides; Human Umbilical Vein Endothelial Cells; Humans; Hypertension; Male; Microtubule-Associated Proteins; Obesity; Proto-Oncogene Proteins c-akt; Rats; Rats, Zucker; RNA Interference; Signal Transduction; Sirolimus; Stilbenes; TOR Serine-Threonine Kinases; Up-Regulation; Vasodilation | 2017 |
The 2017 Transplantation Awards: Recognizing a Landmark Clinical Trial and a Basic Science Discovery With Far-Reaching Implications.
Topics: Animals; Awards and Prizes; Biomedical Research; Carcinoma, Hepatocellular; Clinical Trials, Phase III as Topic; Diet, High-Fat; Graft Rejection; Heart Transplantation; Humans; Immunosuppressive Agents; Liver Neoplasms; Liver Transplantation; Obesity; Organ Transplantation; Randomized Controlled Trials as Topic; Sirolimus | 2017 |
mTORC1 inhibition with rapamycin exacerbates adipose tissue inflammation in obese mice and dissociates macrophage phenotype from function.
Topics: Animals; Biomarkers; Cytokines; Glucose; Immunophenotyping; Inflammation Mediators; Leukocytes; Macrophages; Macrophages, Peritoneal; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Panniculitis; Phenotype; Sirolimus | 2017 |
Diet-induced obesity impairs spermatogenesis: a potential role for autophagy.
Autophagy is an evolutionarily conserved process that plays a crucial role in maintaining a series of cellular functions. It has been found that autophagy is closely involved in the physiological process of spermatogenesis and the regulation of sperm survival and motility. However, the role of autophagy in high-fat diet (HFD)-induced impaired spermatogenesis remains unknown. This study was designed to investigate the role of autophagy in HFD-induced spermatogenesis deficiency and employed chloroquine (CQ) to inhibit autophagy and rapamycin (RAP) to induce autophagy. 3-methyladenine (3-MA) and CQ were administered via intratesticular injection in vivo. The effects of CQ and 3-MA on the parameters of spermatozoa co-cultured with palmitic acid (PA) in vitro were also investigated. Human semen samples from obese, subfertile male patients were also collected to examine the level of autophagy. The results suggested that HFD mice subjected to CQ showed improved spermatogenesis. Inhibiting autophagy with CQ improved the decreased fertility of HFD male mice. Moreover, the in vivo and in vitro results indicated that both CQ and 3-MA could suppress the pathological changes in spermatozoa caused by HFD or PA treatment. Additionally, the excessive activation of autophagy was also observed in sperm samples from obese, subfertile male patients. Topics: Adenine; Animals; Apoptosis; Autophagy; Cells, Cultured; Chloroquine; Diet, High-Fat; Humans; Infertility, Male; Male; Mice; Mice, Inbred C57BL; Obesity; Palmitic Acid; Semen Analysis; Sirolimus; Spermatogenesis; Spermatozoa; Testis | 2017 |
Rapamycin Normalizes Serum Leptin by Alleviating Obesity and Reducing Leptin Synthesis in Aged Rats.
This investigation examines whether a low intermittent dose of rapamycin will avoid the hyperlipidemia and diabetes-like syndrome associated with rapamycin while still decreasing body weight and adiposity in aged obese rats. Furthermore, we examined if the rapamycin-mediated decrease in serum leptin was a reflection of decreased adiposity, diminished leptin synthesis, or both. To these ends, rapamycin (1mg/kg) was administered three times a week to 3 and 24-month old rats. Body weight, food intake, body composition, mTORC1 signaling, markers of metabolism, as well as serum leptin levels and leptin synthesis in adipose tissue were examined and compared to that following a central infusion of rapamycin. Our data suggest that the dosing schedule of rapamycin acts on peripheral targets to inhibit mTORC1 signaling, preferentially reducing adiposity and sparing lean mass in an aged model of obesity resulting in favorable outcomes on blood triglycerides, increasing lean/fat ratio, and normalizing elevated serum leptin with age. The initial mechanism underlying the rapamycin responses appears to have a peripheral action and not central. The peripheral rapamycin responses may communicate an excessive nutrients signal to the hypothalamus that triggers an anorexic response to reduce food consumption. This coupled with potential peripheral mechanism serves to decrease adiposity and synthesis of leptin. Topics: Adiposity; Aging; Animals; Body Weight; Dose-Response Relationship, Drug; Glucose Metabolism Disorders; Immunosuppressive Agents; Leptin; Mechanistic Target of Rapamycin Complex 1; Multiprotein Complexes; Obesity; Rats; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Treatment Outcome | 2016 |
Pharmacological inhibition of S6K1 increases glucose metabolism and Akt signalling in vitro and in diet-induced obese mice.
The mammalian target of rapamycin complex 1 (mTORC1)/p70 ribosomal S6 kinase (S6K)1 pathway is overactivated in obesity, leading to inhibition of phosphoinositide 3-kinase (PI3K)/Akt signalling and insulin resistance. However, chronic mTORC1 inhibition by rapamycin impairs glucose homeostasis because of robust induction of liver gluconeogenesis. Here, we compared the effect of rapamycin with that of the selective S6K1 inhibitor, PF-4708671, on glucose metabolism in vitro and in vivo.. We used L6 myocytes and FAO hepatocytes to explore the effect of PF-4708671 on the regulation of glucose uptake, glucose production and insulin signalling. We also treated high-fat (HF)-fed obese mice for 7 days with PF-4708671 in comparison with rapamycin to assess glucose tolerance, insulin resistance and insulin signalling in vivo.. Chronic rapamycin treatment induced insulin resistance and impaired glucose metabolism in hepatic and muscle cells. Conversely, chronic S6K1 inhibition with PF-4708671 reduced glucose production in hepatocytes and enhanced glucose uptake in myocytes. Whereas rapamycin treatment inhibited Akt phosphorylation, PF-4708671 increased Akt phosphorylation in both cell lines. These opposite effects of the mTORC1 and S6K1 inhibitors were also observed in vivo. Indeed, while rapamycin treatment induced glucose intolerance and failed to improve Akt phosphorylation in liver and muscle of HF-fed mice, PF-4708671 treatment improved glucose tolerance and increased Akt phosphorylation in metabolic tissues of these obese mice.. Chronic S6K1 inhibition by PF-4708671 improves glucose homeostasis in obese mice through enhanced Akt activation in liver and muscle. Our results suggest that specific S6K1 blockade is a valid pharmacological approach to improve glucose disposal in obese diabetic individuals. Topics: Animals; Carbohydrate Metabolism; Cell Line; Glucose; Imidazoles; Mechanistic Target of Rapamycin Complex 1; Mice, Obese; Multiprotein Complexes; Obesity; Piperazines; Proto-Oncogene Proteins c-akt; Rats; Ribosomal Protein S6 Kinases; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2016 |
Everolimus exhibits anti-tumorigenic activity in obesity-induced ovarian cancer.
Everolimus inhibits mTOR kinase activity and its downstream targets by acting on mTORC1 and has anti-tumorigenic activity in ovarian cancer. Clinical and epidemiologic data find that obesity is associated with worse outcomes in ovarian cancer. In addition, obesity leads to hyperactivation of the mTOR pathway in epithelial tissues, suggesting that mTOR inhibitors may be a logical choice for treatment in obesity-driven cancers. However, it remains unclear if obesity impacts the effect of everolimus on tumor growth in ovarian cancer. The present study was aimed at evaluating the effects of everolimus on cytotoxicity, cell metabolism, apoptosis, cell cycle, cell stress and invasion in human ovarian cancer cells. A genetically engineered mouse model of serous ovarian cancer fed a high fat diet or low fat diet allowed further investigation into the inter-relationship between everolimus and obesity in vivo. Everolimus significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, reduced invasion and caused cellular stress via inhibition of mTOR pathways in vitro. Hypoglycemic conditions enhanced the sensitivity of cells to everolimus through the disruption of glycolysis. Moreover, everolimus was found to inhibit ovarian tumor growth in both obese and lean mice. This reduction coincided with a decrease in expression of Ki-67 and phosphorylated-S6, as well as an increase in cleaved caspase 3 and phosphorylated-AKT. Metabolite profiling revealed that everolimus was able to alter tumor metabolism through different metabolic pathways in the obese and lean mice. Our findings support that everolimus may be a promising therapeutic agent for obesity-driven ovarian cancers. Topics: Animals; Antibiotics, Antineoplastic; Apoptosis; Carcinogenesis; Carcinoma, Ovarian Epithelial; Cell Adhesion; Cell Cycle; Cell Movement; Cell Proliferation; Disease Models, Animal; Female; Humans; Mice; Neoplasms, Glandular and Epithelial; Obesity; Ovarian Neoplasms; Phosphorylation; Prognosis; Signal Transduction; Sirolimus; Tumor Cells, Cultured | 2016 |
Chronic Repression of mTOR Complex 2 Induces Changes in the Gut Microbiota of Diet-induced Obese Mice.
Alterations in the gut microbiota play a crucial role in host physiology and metabolism; however, the molecular pathways underlying these changes in diet-induced obesity are unclear. Mechanistic target of rapamycin (mTOR) signaling pathway is associated with metabolic disorders such as obesity and type 2 diabetes (T2D). Therefore, we examined whether changes in the regulation of mTOR signaling induced by diet (a high-fat diet [HFD] or normal-chow diet) and/or therapeutics (resveratrol [a specific inhibitor of mTOR complex 1] or rapamycin [an inhibitor of both mTOR complex 1 and 2]) altered the composition of the gut microbiota in mice. Oral administration of resveratrol prevented glucose intolerance and fat accumulation in HFD-fed mice, whereas rapamycin significantly impaired glucose tolerance and exacerbated intestinal inflammation. The abundance of Lactococcus, Clostridium XI, Oscillibacter, and Hydrogenoanaerobacterium increased under the HFD condition; however, the abundance of these species declined after resveratrol treatment. Conversely, the abundance of unclassified Marinilabiliaceae and Turicibacter decreased in response to a HFD or rapamycin. Taken together, these results demonstrated that changes in the composition of intestinal microbiota induced by changes in mTOR activity correlate with obese and diabetic phenotypes. Topics: Animals; Bacteria; Blood Glucose; Clostridium; Diet, High-Fat; Gastrointestinal Microbiome; Glucose Intolerance; Glucose Tolerance Test; Insulin; Intestines; Lactococcus; Male; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Mice; Mice, Inbred C57BL; Obesity; Resveratrol; Signal Transduction; Sirolimus; Stilbenes | 2016 |
Regulation of cardiac miR-208a, an inducer of obesity, by rapamycin and nebivolol.
Resistance to obesity is observed in rodents and humans treated with rapamycin (Rap) or nebivolol (Neb). Because cardiac miR-208a promotes obesity, this study tested whether the modes of actions of Rap and Neb involve inhibition of miR-208a.. Mouse cardiomyocyte HL-1 cells and Zucker obese (ZO) rats were used to investigate regulation of cardiac miR-208a.. Angiotensin II (Ang II) increased miR-208a expression in HL-1 cells. Pretreatment with an AT1 receptor (AT1R) antagonist, losartan (1 μM), antagonized this effect, whereas a phospholipase C inhibitor, U73122 (10 μM), and an NADPH oxidase inhibitor, apocynin (0.5 mM), did not. Ang II-induced increase in miR-208a was suppressed by Rap (10 nM), an inhibitor of nutrient sensor kinase mTORC1, and Neb (1 μM), a 3rd generation β-blocker that suppressed bioavailable AT1R binding of (125) I-Ang II. Thus, suppression of AT1R expression by Neb, inhibition of AT1R activation by losartan, and inhibition of AT1R-induced activation of mTORC1 by Rap attenuated the Ang II-induced increase in miR-208a. In ZO rats, Rap treatment (750 μg kg(-1) day(-1) ; 12 weeks) reduced obesity despite similar food intake, suppressed cardiac miR-208a, and increased cardiac MED13, a suppresser of obesity.. Rap and Neb suppressed cardiac miR-208a. Suppression of miR-208a and increase in MED13 correlated with attenuated weight gain despite leptin resistance. Topics: Angiotensin II; Animals; Cells, Cultured; Gene Expression Regulation; Male; Mediator Complex; Mice; MicroRNAs; Myocytes, Cardiac; Nebivolol; Obesity; Rats; Rats, Zucker; Signal Transduction; Sirolimus; Weight Gain | 2015 |
Metformin inhibits skin tumor promotion in overweight and obese mice.
In the present study, the ability of metformin to inhibit skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA) was analyzed in mice maintained on either an overweight control diet or an obesity-inducing diet. Rapamycin was included for comparison, and a combination of metformin and rapamycin was also evaluated. Metformin (given in the drinking water) and rapamycin (given topically) inhibited development of both papillomas and squamous cell carcinomas in overweight and obese mice in a dose-dependent manner. A low-dose combination of these two compounds displayed an additive inhibitory effect on tumor development. Metformin treatment also reduced the size of papillomas. Interestingly, all treatments seemed to be at least as effective for inhibiting tumor formation in obese mice, and both metformin and rapamycin were more effective at reducing tumor size in obese mice compared with overweight control mice. The effect of metformin on skin tumor development was associated with a significant reduction in TPA-induced epidermal hyperproliferation. Furthermore, treatment with metformin led to activation of epidermal AMP-activated protein kinase (AMPK) and attenuated signaling through mTOR complex (mTORC)-1 and p70S6K. Combinations of metformin and rapamycin were more effective at blocking epidermal mTORC1 signaling induced by TPA consistent with the greater inhibitory effect on skin tumor promotion. Collectively, the current data demonstrate that metformin given in the drinking water effectively inhibited skin tumor promotion in both overweight and obese mice and that the mechanism involves activation of epidermal AMPK and attenuated signaling downstream of mTORC1. Topics: Adenylate Kinase; Adiponectin; Animals; Body Weight; Carcinogenesis; Carcinoma, Squamous Cell; Diet; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Insulin; Insulin-Like Growth Factor I; Leptin; Mechanistic Target of Rapamycin Complex 1; Metformin; Mice; Mice, Obese; Multiprotein Complexes; Neoplasms, Experimental; Obesity; Overweight; Papilloma; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; Skin Neoplasms; Tetradecanoylphorbol Acetate; TOR Serine-Threonine Kinases | 2014 |
Beneficial metabolic effects of rapamycin are associated with enhanced regulatory cells in diet-induced obese mice.
The "mechanistic target of rapamycin" (mTOR) is a central controller of growth, proliferation and/or motility of various cell-types ranging from adipocytes to immune cells, thereby linking metabolism and immunity. mTOR signaling is overactivated in obesity, promoting inflammation and insulin resistance. Therefore, great interest exists in the development of mTOR inhibitors as therapeutic drugs for obesity or diabetes. However, despite a plethora of studies characterizing the metabolic consequences of mTOR inhibition in rodent models, its impact on immune changes associated with the obese condition has never been questioned so far. To address this, we used a mouse model of high-fat diet (HFD)-fed mice with and without pharmacologic mTOR inhibition by rapamycin. Rapamycin was weekly administrated to HFD-fed C57BL/6 mice for 22 weeks. Metabolic effects were determined by glucose and insulin tolerance tests and by indirect calorimetry measures of energy expenditure. Inflammatory response and immune cell populations were characterized in blood, adipose tissue and liver. In parallel, the activities of both mTOR complexes (e. g. mTORC1 and mTORC2) were determined in adipose tissue, muscle and liver. We show that rapamycin-treated mice are leaner, have enhanced energy expenditure and are protected against insulin resistance. These beneficial metabolic effects of rapamycin were associated to significant changes of the inflammatory profiles of both adipose tissue and liver. Importantly, immune cells with regulatory functions such as regulatory T-cells (Tregs) and myeloid-derived suppressor cells (MDSCs) were increased in adipose tissue. These rapamycin-triggered metabolic and immune effects resulted from mTORC1 inhibition whilst mTORC2 activity was intact. Taken together, our results reinforce the notion that controlling immune regulatory cells in metabolic tissues is crucial to maintain a proper metabolic status and, more generally, comfort the need to search for novel pharmacological inhibitors of the mTOR signaling pathway to prevent and/or treat metabolic diseases. Topics: Adipose Tissue; Animals; Cell Proliferation; Dietary Fats; Disease Models, Animal; Female; Immunosuppressive Agents; Insulin Resistance; Liver; Male; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Mice; Multiprotein Complexes; Myeloid Cells; Obesity; Signal Transduction; Sirolimus; T-Lymphocytes, Regulatory; TOR Serine-Threonine Kinases | 2014 |
Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1.
Identification of key regulators of lipid metabolism and thermogenic functions has important therapeutic implications for the current obesity and diabetes epidemic. Here, we show that Grb10, a direct substrate of mechanistic/mammalian target of rapamycin (mTOR), is expressed highly in brown adipose tissue, and its expression in white adipose tissue is markedly induced by cold exposure. In adipocytes, mTOR-mediated phosphorylation at Ser501/503 switches the binding preference of Grb10 from the insulin receptor to raptor, leading to the dissociation of raptor from mTOR and downregulation of mTOR complex 1 (mTORC1) signaling. Fat-specific disruption of Grb10 increased mTORC1 signaling in adipose tissues, suppressed lipolysis, and reduced thermogenic function. The effects of Grb10 deficiency on lipolysis and thermogenesis were diminished by rapamycin administration in vivo. Our study has uncovered a unique feedback mechanism regulating mTORC1 signaling in adipose tissues and identified Grb10 as a key regulator of adiposity, thermogenesis, and energy expenditure. Topics: Adaptor Proteins, Signal Transducing; Adipose Tissue, Brown; Adipose Tissue, White; Animals; Antibiotics, Antineoplastic; Cells, Cultured; Cold Temperature; Cold-Shock Response; Diabetes Mellitus; Energy Metabolism; Feedback, Physiological; GRB10 Adaptor Protein; Insulin Resistance; Lipolysis; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Knockout; Multiprotein Complexes; Obesity; Phosphatidylinositol 3-Kinases; Phosphorylation; Protein Binding; Proto-Oncogene Proteins c-akt; Receptor, Insulin; Regulatory-Associated Protein of mTOR; Signal Transduction; Sirolimus; Thermogenesis; TOR Serine-Threonine Kinases | 2014 |
Effects of obesity on transcriptomic changes and cancer hallmarks in estrogen receptor-positive breast cancer.
Obesity increases the risk of cancer death among postmenopausal women with estrogen receptor-positive (ER+) breast cancer, but the direct evidence for the mechanisms is lacking. The purpose of this study is to demonstrate direct evidence for the mechanisms mediating this epidemiologic phenomenon.. We analyzed transcriptomic profiles of pretreatment biopsies from a prospective cohort of 137 ER+ breast cancer patients. We generated transgenic (MMTV-TGFα;A (y) /a) and orthotopic/syngeneic (A (y) /a) obese mouse models to investigate the effect of obesity on tumorigenesis and tumor progression and to determine biological mechanisms using whole-genome transcriptome microarrays and protein analyses. We used a coculture system to examine the impact of adipocytes/adipokines on breast cancer cell proliferation. All statistical tests were two-sided.. Functional transcriptomic analysis of patients revealed the association of obesity with 59 biological functional changes (P < .05) linked to cancer hallmarks. Gene enrichment analysis revealed enrichment of AKT-target genes (P = .04) and epithelial-mesenchymal transition genes (P = .03) in patients. Our obese mouse models demonstrated activation of the AKT/mTOR pathway in obesity-accelerated mammary tumor growth (3.7- to 7.0-fold; P < .001; n = 6-7 mice per group). Metformin or everolimus can suppress obesity-induced secretion of adipokines and breast tumor formation and growth (0.5-fold, P = .04; 0.3-fold, P < .001, respectively; n = 6-8 mice per group). The coculture model revealed that adipocyte-secreted adipokines (eg, TIMP-1) regulate adipocyte-induced breast cancer cell proliferation and invasion. Metformin suppress adipocyte-induced cell proliferation and adipocyte-secreted adipokines in vitro.. Adipokine secretion and AKT/mTOR activation play important roles in obesity-accelerated breast cancer aggressiveness in addition to hyperinsulinemia, estrogen signaling, and inflammation. Metformin and everolimus have potential for therapeutic interventions of ER+ breast cancer patients with obesity. Topics: Adipocytes; Adipokines; Aged; Animals; Antineoplastic Agents; Biomarkers, Tumor; Breast Neoplasms; Cell Proliferation; Disease Models, Animal; Everolimus; Female; Humans; Kaplan-Meier Estimate; Metformin; Mice; Mice, Transgenic; Middle Aged; Obesity; Postmenopause; Prospective Studies; Proto-Oncogene Proteins c-akt; Receptors, Estrogen; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Transcriptome | 2014 |
Comparison of rapamycin schedules in mice on high-fat diet.
At a wide range of doses, rapamycin extends life span in mice. It was shown that intraperitoneal injections (i.p.) of rapamycin prevent weight gain in mice on high-fat diet (HFD). We further investigated the effect of rapamycin on weight gain in female C57BL/6 mice on HFD started at the age of 7.5 months. By the age of 16 and 23 months, mice on HFD weighed significantly more (52 vs 33 g; p = 0.0001 and 70 vs 38 g; p < 0.0001, respectively) than mice on low fat diet (LFD). The i.p. administration of 1.5 mg/kg rapamycin, 3 times a week every other week, completely prevented weight gain, whereas administration of rapamycin by oral gavash did not. Rapamycin given in the drinking water slightly decreased weight gain by the age of 23 months. In addition, metabolic parameters were evaluated at the age of 16 and 23 months, 6 and 13 days after last rapamycin administration, respectively. Plasma leptin levels strongly correlated with body weight, (P < 0.0001, r=0.86), suggesting that the difference in weight was due to fat tissue mass. Levels of insulin, glucose, triglycerides and IGF1 were not statistically different in all groups, indicating that these courses of rapamycin treatment did not impair metabolic parameters at least after rapamycin discontinuation. Despite rapamycin discontinuation, cardiac levels of phospho-S6 and pAKT(S473) were low in the i.p.-treated group. This continuous effect of rapamycin can be explained by prevention of obesity in the i.p. group. We conclude that intermittent i.p. administration of rapamycin prevents weight gain without causing gross metabolic abnormalities. Intermittent gavash administration minimally affected weight gain. Potential clinical applications are discussed. Topics: Animals; Blood Glucose; Diet, High-Fat; Female; Immunosuppressive Agents; Injections, Intraperitoneal; Insulin; Leptin; Mice; Mice, Inbred C57BL; Obesity; Phosphorylation; Proto-Oncogene Proteins c-akt; Ribosomal Protein S6 Kinases; Sirolimus; Triglycerides; Weight Gain | 2014 |
Mechanism for the synergistic effect of rapamycin and resveratrol on hyperinsulinemia may involve the activation of protein kinase B.
Topics: Animals; Diet, High-Fat; Humans; Hyperinsulinism; Male; Obesity; Sirolimus; Stilbenes | 2013 |
The enhancing effects of obesity on mammary tumor growth and Akt/mTOR pathway activation persist after weight loss and are reversed by RAD001.
The prevalence of obesity, an established risk and progression factor for postmenopausal breast cancer, remains high in US women. Activation of Akt/mammalian target of rapamycin (mTOR) signaling plays a key role in the obesity-breast cancer link. However, the impact of weight normalization in obese postmenopausal women on breast tumorigenesis and/or Akt/mTOR activation is poorly characterized. To model this, ovariectomized female C57BL/6 mice were fed a control diet (n = 20), a calorie restriction (CR) regimen (n = 20), or a diet-induced obesity (DIO) diet (n = 30). At week 17, DIO mice were switched to control diet, resulting in formerly obese (FOb) mice with weights identical to the controls by week 20. MMTV-Wnt-1 mammary tumor cells were injected at 20 wk into each mouse. Two weeks post-injection, vehicle or the mTOR inhibitor RAD001 at 10 or 15 mg/kg body weight (n = 10/diet group) was administered by gavage twice/week until termination. Relative to controls, CR mice had decreased (and DIO mice had increased) serum insulin-like growth factor-1 (IGF-1) and phosphorylation of Akt/mTOR pathway components. RAD001 decreased tumor growth in the CR, control, and FOb mice. Wnt-1 tumor cells treated in vitro with serum from mice from each group established that diet-dependent circulating factors contribute to tumor growth and invasiveness. These findings suggest weight normalization in obese mice does not immediately reverse tumor progression or Akt/mTOR activation. Treatment with RAD001 blocked mammary tumor development and mTOR activation observed in the FOb mice, suggesting combination of lifestyle and pharmacologic strategies may be effective for breaking the obesity-breast cancer link. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Diet; Everolimus; Female; Hormones; Insulin-Like Growth Factor I; Mammary Glands, Animal; Mammary Neoplasms, Experimental; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Weight Loss; Wnt1 Protein | 2013 |
Bombesin receptor subtype-3 (BRS-3), a novel candidate as therapeutic molecular target in obesity and diabetes.
BRS-3 KO-mice developed obesity and unbalanced glucose metabolism, suggesting an important role of BRS-3 receptor in glucose homeostasis. We explored BRS-3 expression in skeletal muscle from normal, obese or type-2 diabetic (T2D) patients, and the effect of [D-Phe(6), β-Ala(11),Phe(13),Nle(14)]bombesin(6-14)-BRS-3-agonist-peptide (BRS-3-AP) - on glucose-related effects, before or after BRS-3 gene silencing. In muscle tissue and primary cultured myocytes from altered metabolic states, BRS-3 gene/protein expressions were down-regulated. In normal, obese and T2D cells: A) BRS-3-AP as insulin enhanced BRS-3 and GLUT-4 mRNA/protein levels; improving glucotransporter translocation to plasma membrane, and B) BRS-3-AP caused a concentration-related-stimulation of glucose transport, being obese and T2D myocytes more sensitive to the ligand than normal. Wortmannin and PD98059, but not rapamycin, abolished the stimulatory action of BRS-3-AP on glucose transport. BRS-3 plays an important role in glucose metabolism, and could be use as a molecular target, and/or its ligand, as a therapeutic agent for obesity and diabetes treatments. Topics: Adult; Aged; Androstadienes; Animals; Biological Transport; Cells, Cultured; Diabetes Mellitus, Type 2; Female; Flavonoids; Gene Expression Regulation; Glucose; Glucose Transporter Type 4; Humans; Insulin; Male; Mice; Mice, Knockout; Middle Aged; Molecular Targeted Therapy; Muscle Cells; Muscle, Skeletal; Obesity; Peptides; Receptors, Bombesin; Sirolimus; Wortmannin | 2013 |
Resveratrol potentiates rapamycin to prevent hyperinsulinemia and obesity in male mice on high fat diet.
High doses of rapamycin, an antiaging agent, can prevent obesity in mice on high fat diet (HFD). Obesity is usually associated with hyperinsulinemia. Here, we showed that rapamycin given orally, at doses that did not affect weight gain in male mice on HFD, tended to decrease fasting insulin levels. Addition of resveratrol, which alone did not affect insulin levels, potentiated the effect of rapamycin, so that the combination decreased obesity and prevented hyperinsulinemia. Neither rapamycin nor resveratrol, and their combination affected fasting levels of glucose (despite lowering insulin levels), implying that the combination might prevent insulin resistance. We and others previously reported that resveratrol at high doses inhibited the mTOR (Target of Rapamycin) pathway in cell culture. Yet, as we confirmed here, this effect was observed only at super-pharmacological concentrations. At pharmacological concentrations, resveratrol did not exert 'rapamycin-like effects' on cellular senescence and did not inhibit the mTOR pathway in vitro, indicating nonoverlapping therapeutic mechanisms of actions of rapamycin and resveratrol in vivo. Although, like rapamycin, resveratrol decreased insulin-induced HIF-1-dependent transcription in cell culture, resveratrol did not inhibit mTOR at the same concentrations. Given distinct mechanisms of action of rapamycin and resveratrol at clinically relevant doses, their combination warrants further investigation as a potential antiaging, antiobesity and antidiabetic modality. Topics: Animals; Cell Line, Tumor; Cellular Senescence; Diet, High-Fat; Humans; Hyperinsulinism; Hypoxia-Inducible Factor 1, alpha Subunit; Insulin; Insulin Resistance; Male; Mice; Obesity; Resveratrol; Sirolimus; Stilbenes; TOR Serine-Threonine Kinases; Transcription, Genetic; Weight Gain | 2013 |
A mouse model of diet-induced obesity and insulin resistance.
Obesity is reaching pandemic proportions in Western society. It has resulted in increasing health care burden and decreasing life expectancy. Obesity is a complex, chronic disease, involving decades of pathophysiological changes and adaptation. Therefore, it is difficult ascertain the exact mechanisms for this long-term process in humans. To circumvent some of these issues, several surrogate models are available, including murine genetic loss-of-function mutations, transgenic gain-of-function mutations, polygenic models, and different environmental exposure models. The mouse model of diet-induced obesity has become one of the most important tools for understanding the interplay of high-fat Western diets and the development of obesity. The diet-induced obesity model closely mimics the increasingly availability of the high-fat/high-density foods in modern society over the past two decades, which are main contributors to the obesity trend in human. This model has lead to many discoveries of the important signalings in obesity, such as Akt and mTOR. The chapter describes protocols for diet induced-obesity model in mice and protocols for measuring insulin resistance and sensitivity. Topics: Animals; Diet, High-Fat; Disease Models, Animal; Glucose; Humans; Insulin; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mutation; Obesity; Oncogene Protein v-akt; Sirolimus; TOR Serine-Threonine Kinases | 2012 |
Calorie restriction and rapamycin inhibit MMTV-Wnt-1 mammary tumor growth in a mouse model of postmenopausal obesity.
Obesity is an established risk and progression factor for postmenopausal breast cancer. Interventions to decrease caloric intake and/or increase energy expenditure beneficially impact tumor progression in normoweight humans and animal models. However, despite the increasingly high global prevalence of obesity, the effects and underlying mechanisms of these energy balance modulating interventions are poorly characterized in obese individuals. The goal of this study was to better characterize the mechanism(s) responsible for the link between energy balance and breast cancer progression in the postmenopausal obesity context. We compared the effects of calorie restriction (CR), treadmill exercise (EX), and mammalian target of rapamycin (mTOR inhibitor) treatment on body composition, serum biomarkers, cellular signaling, and mammary tumor growth in obese mice. Ovariectomized C57BL/6 mice were administered a diet-induced obesity regimen for 8 weeks, then randomized into three treatment groups: control (semipurified diet fed ad libitum, maintained the obese state); 30% CR (isonutrient relative to control except 30% reduction in carbohydrate calories); and EX (control diet fed ad libitum plus treadmill exercise). Mice were implanted with syngeneic MMTV-Wnt-1 mammary tumor cells at week 12. Rapamycin treatment (5 mg/kg every 48 h) started at week 14. Tumors were excised at week 18. CR and rapamycin (but not EX) significantly reduced final tumor weight compared to control. In follow-up analysis, constitutive activation of mTOR ablated the inhibitory effects of CR on Wnt-1 mammary tumor growth. We conclude that mTOR inhibition may be a pharmacologic strategy to mimic the anticancer effects of CR and break the obesity-breast cancer progression link. Topics: Animals; Antibiotics, Antineoplastic; Blotting, Western; Caloric Restriction; Cell Cycle; Cell Proliferation; Disease Models, Animal; Energy Intake; Female; Mammary Neoplasms, Animal; Mammary Tumor Virus, Mouse; Mice; Mice, Inbred C57BL; Obesity; Ovariectomy; Physical Conditioning, Animal; Postmenopause; Sirolimus; Survival Rate; TOR Serine-Threonine Kinases; Wnt1 Protein | 2012 |
No evidence of "obesity paradox" after treatment with drug-eluting stents in a routine clinical practice: results from the prospective multicenter German DES.DE (German Drug-Eluting Stent) Registry.
The aim of this study was to compare clinical outcomes among unselected patients stratified in categories of body mass index, who underwent percutaneous coronary intervention (PCI) with either sirolimus-eluting or paclitaxel-eluting stents.. Overweight and obesity are often considered risk factors for cardiovascular events. However, recent studies have associated obesity with better outcomes after PCI with bare-metal stents. Data from routine clinical practice using drug-eluting stents (DES) focusing on this "obesity paradox" are not available.. We used data from DES.DE (German Drug-Eluting Stent) registry to compare in-hospital and 1-year outcomes among unselected patients undergoing PCI with DES implantation. Primary endpoints were the rate of major adverse cardiac and cerebrovascular events (MACCE) (defined as the composite of death, myocardial infarction, and stroke) and target vessel revascularization (TVR).. Between October 2005 and 2006, 1,436 normal weight, 2,839 overweight, and 1,531 obese patients treated with DES were enrolled at 98 sites. Baseline clinical parameters were more severe in overweight and obese patients; 1-year follow-up comparison between groups revealed similar rates of all-cause death (3.3% vs. 2.4% vs. 2.4%; p=0.17), MACCE (7.1% vs. 5.6% vs. 5.5%; p=0.09), and TVR in survivors (10.9% vs. 11.7% vs. 11.6%; p=0.56) in normal weight individuals compared with overweight or obese patients. Such results persisted after risk-adjustment for heterogeneous baseline characteristics of groups and were independent of the types of DES.. DES.DE revealed no evidence of "obesity paradox" in a routine clinical practice using DES. Topics: Aged; Angioplasty, Balloon, Coronary; Antineoplastic Agents, Phytogenic; Body Mass Index; Coronary Artery Disease; Drug-Eluting Stents; Female; Humans; Immunosuppressive Agents; Male; Middle Aged; Obesity; Paclitaxel; Proportional Hazards Models; Prospective Studies; Registries; Risk Factors; Sirolimus; Statistics as Topic | 2012 |
Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice.
Recent GWAS have identified SNPs at a human chromosom1 locus associated with coronary artery disease risk and LDL cholesterol levels. The SNPs are also associated with altered expression of hepatic sortilin-1 (SORT1), which encodes a protein thought to be involved in apoB trafficking and degradation. Here, we investigated the regulation of Sort1 expression in mouse models of obesity. Sort1 expression was markedly repressed in both genetic (ob/ob) and high-fat diet models of obesity; restoration of hepatic sortilin-1 levels resulted in reduced triglyceride and apoB secretion. Mouse models of obesity also exhibit increased hepatic activity of mammalian target of rapamycin complex 1 (mTORC1) and ER stress, and we found that administration of the mTOR inhibitor rapamycin to ob/ob mice reduced ER stress and increased hepatic sortilin-1 levels. Conversely, genetically increased hepatic mTORC1 activity was associated with repressed Sort1 and increased apoB secretion. Treating WT mice with the ER stressor tunicamycin led to marked repression of hepatic sortilin-1 expression, while administration of the chemical chaperone PBA to ob/ob mice led to amelioration of ER stress, increased sortilin-1 expression, and reduced apoB and triglyceride secretion. Moreover, the ER stress target Atf3 acted at the SORT1 promoter region as a transcriptional repressor, whereas knockdown of Atf3 mRNA in ob/ob mice led to increased hepatic sortilin-1 levels and decreased apoB and triglyceride secretion. Thus, in mouse models of obesity, induction of mTORC1 and ER stress led to repression of hepatic Sort1 and increased VLDL secretion via Atf3. This pathway may contribute to dyslipidemia in metabolic disease. Topics: Activating Transcription Factor 3; Adaptor Proteins, Vesicular Transport; Animals; Apolipoproteins B; Base Sequence; Binding Sites; Diet, High-Fat; Down-Regulation; Endoplasmic Reticulum Stress; fas Receptor; Gene Expression Regulation; Humans; Lipid Metabolism; Lipoproteins, VLDL; Liver; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Inbred C57BL; Mice, Obese; Multiprotein Complexes; Obesity; Promoter Regions, Genetic; Proteins; Sirolimus; Sterol Regulatory Element Binding Protein 1; TOR Serine-Threonine Kinases; Transcription, Genetic; Triglycerides | 2012 |
Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons.
The prevalence of obesity in older people is the leading cause of metabolic syndromes. Central neurons serving as homeostatic sensors for body-weight control include hypothalamic neurons that express pro-opiomelanocortin (POMC) or neuropeptide-Y (NPY) and agouti-related protein (AgRP). Here, we report an age-dependent increase of mammalian target of rapamycin (mTOR) signaling in POMC neurons that elevates the ATP-sensitive potassium (K(ATP)) channel activity cell-autonomously to silence POMC neurons. Systemic or intracerebral administration of the mTOR inhibitor rapamycin causes weight loss in old mice. Intracerebral rapamycin infusion into old mice enhances the excitability and neurite projection of POMC neurons, thereby causing a reduction of food intake and body weight. Conversely, young mice lacking the mTOR-negative regulator TSC1 in POMC neurons, but not those lacking TSC1 in NPY/AgRP neurons, were obese. Our study reveals that an increase in mTOR signaling in hypothalamic POMC neurons contributes to age-dependent obesity. Topics: Action Potentials; Aging; Animals; Eating; Hypothalamus; Immunohistochemistry; KATP Channels; Mice; Mice, Transgenic; Multiplex Polymerase Chain Reaction; Neurons; Neurotransmitter Agents; Obesity; Organ Culture Techniques; Patch-Clamp Techniques; Pro-Opiomelanocortin; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2012 |
Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic β-cells: protective role of p62-positive cytoplasmic inclusions.
In type II diabetes (T2DM), there is a deficit in β-cells, increased β-cell apoptosis and formation of intracellular membrane-permeant oligomers of islet amyloid polypeptide (IAPP). Human-IAPP (h-IAPP) is an amyloidogenic protein co-expressed with insulin by β-cells. IAPP expression is increased with obesity, the major risk factor for T2DM. In this study we report that increased expression of human-IAPP led to impaired autophagy, due at least in part to the disruption of lysosome-dependent degradation. This action of IAPP to alter lysosomal clearance in vivo depends on its propensity to form toxic oligomers and is independent of the confounding effect of hyperglycemia. We report that the scaffold protein p62 that delivers polyubiquitinated proteins to autophagy may have a protective role against human-IAPP-induced apoptosis, apparently by sequestrating protein targets for degradation. Finally, we found that inhibition of lysosomal degradation increases vulnerability of β-cells to h-IAPP-induced toxicity and, conversely, stimulation of autophagy protects β-cells from h-IAPP-induced apoptosis. Collectively, these data imply an important role for the p62/autophagy/lysosomal degradation system in protection against toxic oligomer-induced apoptosis. Topics: Adaptor Proteins, Signal Transducing; Animals; Apoptosis; Autophagy; Cell Line; Heat-Shock Proteins; Hyperglycemia; Inclusion Bodies; Insulin-Secreting Cells; Islet Amyloid Polypeptide; Lysosomes; Mice; Obesity; Phagosomes; Protective Agents; Protein Processing, Post-Translational; Protein Structure, Quaternary; Rats; RNA, Small Interfering; Sequestosome-1 Protein; Signal Transduction; Sirolimus | 2011 |
Role of S6K1 in regulation of SREBP1c expression in the liver.
The transcription factor sterol regulatory element-binding protein 1c (SREBP1c) plays an important role in the control of fatty acid metabolism in the liver. Evidence suggests that mammalian target of rapamycin (mTOR) complex 1 (mTORC1) contributes to the regulation of SREBP1c expression, but signaling downstream of mTORC1 remains unclear. We have now shown that medium rich in branched-chain amino acids stimulates expression of the SREBP1c gene in cultured hepatocytes in a manner sensitive both to rapamycin, a pharmacological inhibitor of mTORC1, and to a short hairpin RNA (shRNA) specific for S6 kinase 1 (S6K1), a downstream effector of mTORC1. The phosphorylation of S6K1 was increased in the liver of obese db/db mice. Furthermore, depletion of hepatic S6K1 in db/db mice with the use of an adenovirus vector encoding S6K1 shRNA resulted in down-regulation of SREBP1c gene expression in the liver as well as a reduced hepatic triglyceride content and serum triglyceride concentration. These results thus suggest that S6K1 regulates SREBP1c expression both in cultured hepatocytes and in mouse liver, and that increased hepatic activity of S6K1 contributes at least in part to the pathogenesis of obesity-induced hepatic steatosis and hypertriglyceridemia. Topics: Animals; Cell Line; Chromones; Fatty Liver; Gene Expression Regulation; Hepatocytes; Hypertriglyceridemia; Liver; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Inbred Strains; Morpholines; Multiprotein Complexes; Obesity; Proteins; Ribosomal Protein S6 Kinases, 90-kDa; RNA, Small Interfering; Sirolimus; Sterol Regulatory Element Binding Protein 1; TOR Serine-Threonine Kinases | 2011 |
Obesity increases vascular senescence and susceptibility to ischemic injury through chronic activation of Akt and mTOR.
Obesity and age are important risk factors for cardiovascular disease. However, the signaling mechanism linking obesity with age-related vascular senescence is unknown. Here we show that mice fed a high-fat diet show increased vascular senescence and vascular dysfunction compared to mice fed standard chow and are more prone to peripheral and cerebral ischemia. All of these changes involve long-term activation of the protein kinase Akt. In contrast, mice with diet-induced obesity that lack Akt1 are resistant to vascular senescence. Rapamycin treatment of diet-induced obese mice or of transgenic mice with long-term activation of endothelial Akt inhibits activation of mammalian target of rapamycin (mTOR)-rictor complex 2 and Akt, prevents vascular senescence without altering body weight, and reduces the severity of limb necrosis and ischemic stroke. These findings indicate that long-term activation of Akt-mTOR signaling links diet-induced obesity with vascular senescence and cardiovascular disease. Topics: Animals; Cardiovascular Diseases; Carrier Proteins; Cellular Senescence; Disease Susceptibility; Eating; Enzyme Activation; Ischemia; Mice; Mice, Transgenic; Obesity; Phosphotransferases (Alcohol Group Acceptor); Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2009 |
Critical role for hypothalamic mTOR activity in energy balance.
The mammalian target of rapamycin (mTOR) promotes anabolic cellular processes in response to growth factors and metabolic cues. The TSC1 and TSC2 tumor suppressors are major upstream inhibitory regulators of mTOR signaling. Mice with Rip2/Cre-mediated deletion of Tsc1 (Rip-Tsc1cKO mice) developed hyperphagia and obesity, suggesting that hypothalamic disruption (for which Rip2/Cre is well known) of Tsc1 may dysregulate feeding circuits via mTOR activation. Indeed, Rip-Tsc1cKO mice displayed increased mTOR signaling and enlarged neuron cell size in a number of hypothalamic populations, including Pomc neurons. Furthermore, Tsc1 deletion with Pomc/Cre (Pomc-Tsc1cKO mice) resulted in dysregulation of Pomc neurons and hyperphagic obesity. Treatment with the mTOR inhibitor, rapamycin, ameliorated the hyperphagia, obesity, and the altered Pomc neuronal morphology in developing or adult Pomc-Tsc1cKO mice, and cessation of treatment reinstated these phenotypes. Thus, ongoing mTOR activation in Pomc neurons blocks the catabolic function of these neurons to promote nutrient intake and increased adiposity. Topics: Animals; Energy Metabolism; Gene Deletion; Hyperphagia; Hypothalamus; Melanocortins; Mice; Mice, Knockout; Neurons; Obesity; Pro-Opiomelanocortin; Protein Kinases; Receptor-Interacting Protein Serine-Threonine Kinase 2; Receptor-Interacting Protein Serine-Threonine Kinases; Sirolimus; TOR Serine-Threonine Kinases; Tuberous Sclerosis Complex 1 Protein; Tumor Suppressor Proteins | 2009 |
Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice.
Rapamycin (RAPA), an immunosuprpressive drug used extensively to prevent graft rejection in transplant patients, has been reported to inhibit adipogenesis in vitro. In this study, we investigated the anti-obesity effects of RAPA in C57BL/6J mice on a high-fat diet (HFD). Mice treated with RAPA (2 mg/kg per week for 16 weeks) had reduced body weight and epididymal fat pads/body weight, reduced daily food efficiency, and lower serum leptin and insulin levels compared with the HFD control mice. However, RAPA-treated mice were hyperphagic, demonstrating an increase in food intake. Dissection of RAPA-treated mice revealed a marked reduction in fatty liver scores, average fat cell size, and percentage of large adipocytes of retroperitoneal and epididymal white adipose tissue (RWAT and EWAT), compared to the HFD control mice. These results suggest that RAPA prevented the effect of the high-fat diet on the rate of accretion in body weight via reducing lipid accumulation, despite greater food intake. It is likely that RAPA may serve as a potential strategy for body weight control and/or anti-obesity therapy. Topics: Adipocytes; Animals; Blood Glucose; Body Weight; Cell Size; Diet; Dietary Fats; Eating; Immunosuppressive Agents; Insulin; Leptin; Male; Mice; Mice, Inbred C57BL; Obesity; Organ Size; Sirolimus | 2009 |
Gastric mammalian target of rapamycin signaling regulates ghrelin production and food intake.
Ghrelin, a gastric hormone, provides a hunger signal to the central nervous system to stimulate food intake. Mammalian target of rapamycin (mTOR) is an intracellular fuel sensor critical for cellular energy homeostasis. Here we showed the reciprocal relationship of gastric mTOR signaling and ghrelin during changes in energy status. mTOR activity was down-regulated, whereas gastric preproghrelin and circulating ghrelin were increased by fasting. In db/db mice, gastric mTOR signaling was enhanced, whereas gastric preproghrelin and circulating ghrelin were decreased. Inhibition of the gastric mTOR signaling by rapamycin stimulated the expression of gastric preproghrelin and ghrelin mRNA and increased plasma ghrelin in both wild-type and db/db mice. Activation of the gastric mTOR signaling by l-leucine decreased the expression of gastric preproghrelin and the level of plasma ghrelin. Overexpression of mTOR attenuated ghrelin promoter activity, whereas inhibition of mTOR activity by overexpression of TSC1 or TSC2 increased its activity. Ghrelin receptor antagonist d-Lys-3-GH-releasing peptide-6 abolished the rapamycin-induced increment in food intake despite that plasma ghrelin remained elevated. mTOR is therefore a gastric fuel sensor whose activity is linked to the regulation of energy intake through ghrelin. Topics: Animals; Blotting, Western; Eating; Fasting; Gastric Mucosa; Gene Expression Regulation; Ghrelin; Immunohistochemistry; Leucine; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Polymerase Chain Reaction; Promoter Regions, Genetic; Protein Kinases; Receptors, Ghrelin; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2009 |
Long-term administration of rapamycin reduces adiposity, but impairs glucose tolerance in high-fat diet-fed KK/HlJ mice.
Rapamycin is an immunosuppressant drug used to prevent organ rejection in transplant patients. In this study, we investigated the metabolic effects of rapamycin in an obese animal model, KK/HlJ mice. Mice were treated with a daily intraperitoneal injection of rapamycin at 2 mg/kg or vehicle for 42 days on a high-fat diet. Treated mice lost body weight and adiposity, reduced weight gain and retroperitoneal and epididymal fat pads/body weight, decreased serum leptin and plasma triglyceride levels and had lower liver fat concentration. However, treated mice had higher serum insulin levels and food intake. Dissection of rapamycin-treated mice revealed a marked reduction in fatty liver scores and fat cell size in retroperitoneal and epididymal adipocytes. Moreover, Western blot analysis revealed that rapamycin treatment resulted in decreasing adipophilin expression, as a marker of lipid accumulation, and reducing phosphorylation of mTOR downstream targets S6K1 compared to control group. Unfortunately, rapamycin-treated animals showed a marked decline in glucose tolerance as judged by the 180-min. area under the curve for plasma glucose levels, paralleled by increased generation of plasma reactive oxygen species. These results suggest that continual rapamycin administration may help to prevent diet-induced obesity, while prolonged use of rapamycin may exacerbate glucose intolerance. Topics: Adipocytes; Adipose Tissue, White; Adiposity; Animals; Body Weight; Dietary Fats; Eating; Glucose; Glucose Tolerance Test; Immunosuppressive Agents; Insulin; Leptin; Male; Mice; Obesity; Sirolimus | 2009 |
Critical roles for the TSC-mTOR pathway in β-cell function.
TSC1 is a tumor suppressor that associates with TSC2 to inactivate Rheb, thereby inhibiting signaling by the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). mTORC1 stimulates cell growth by promoting anabolic cellular processes, such as translation, in response to growth factors and nutrient signals. To test roles for TSC1 and mTORC1 in β-cell function, we utilized Rip2/Cre to generate mice lacking Tsc1 in pancreatic β-cells (Rip-Tsc1cKO mice). Although obesity developed due to hypothalamic Tsc1 excision in older Rip-Tsc1cKO animals, young animals displayed a prominent gain-of-function β-cell phenotype prior to the onset of obesity. The young Rip-Tsc1cKO animals displayed improved glycemic control due to mTOR-mediated enhancement of β-cell size, mass, and insulin production but not determinants of β-cell number (proliferation and apoptosis), consistent with an important anabolic role for mTOR in β-cell function. Furthermore, mTOR mediated these effects in the face of impaired Akt signaling in β-cells. Thus, mTOR promulgates a dominant signal to promote β-cell/islet size and insulin production, and this pathway is crucial for β-cell function and glycemic control. Topics: Aging; Animals; Anti-Bacterial Agents; Appetite; Blood Glucose; Blotting, Western; Cell Size; Immunohistochemistry; Insulin; Insulin Resistance; Insulin-Secreting Cells; Mice; Mice, Knockout; Nerve Net; Obesity; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Transcription Factors; Tuberous Sclerosis Complex 1 Protein; Tumor Suppressor Proteins | 2009 |
Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration.
raptor is a specific and essential component of mammalian TOR complex 1 (mTORC1), a key regulator of cell growth and metabolism. To investigate a role of adipose mTORC1 in regulation of adipose and whole-body metabolism, we generated mice with an adipose-specific knockout of raptor (raptor(ad-/-)). Compared to control littermates, raptor(ad-/-) mice had substantially less adipose tissue, were protected against diet-induced obesity and hypercholesterolemia, and exhibited improved insulin sensitivity. Leanness was in spite of reduced physical activity and unaffected caloric intake, lipolysis, and absorption of lipids from the food. White adipose tissue of raptor(ad-/-) mice displayed enhanced expression of genes encoding mitochondrial uncoupling proteins characteristic of brown fat. Leanness of the raptor(ad-/-) mice was attributed to elevated energy expenditure due to mitochondrial uncoupling. These results suggest that adipose mTORC1 is a regulator of adipose metabolism and, thereby, controls whole-body energy homeostasis. Topics: 3T3-L1 Cells; Adaptor Proteins, Signal Transducing; Adipose Tissue, Brown; Adipose Tissue, White; Animals; Carrier Proteins; Cell Respiration; Dietary Fats; Energy Metabolism; Hypercholesterolemia; Insulin; Male; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Knockout; Mitochondria; Multiprotein Complexes; Obesity; Organ Specificity; Proteins; Regulatory-Associated Protein of mTOR; Sirolimus; TOR Serine-Threonine Kinases; Transcription Factors | 2008 |
Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance.
S6K1 has emerged as a critical signaling component in the development of insulin resistance through phosphorylation and inhibition of IRS-1 function. This effect can be triggered directly by nutrients such as amino acids or by insulin through a homeostatic negative-feedback loop. However, the role of S6K1 in mediating IRS-1 phosphorylation in a physiological setting of nutrient overload is unresolved. Here we show that S6K1 directly phosphorylates IRS-1 Ser-1101 in vitro in the C-terminal domain of the protein and that mutation of this site largely blocks the ability of amino acids to suppress IRS-1 tyrosine and Akt phosphorylation. Consistent with this finding, phosphorylation of IRS-1 Ser-1101 is increased in the liver of obese db/db and wild-type, but not S6K1(-/-), mice maintained on a high-fat diet and is blocked by siRNA knockdown of S6K1 protein. Finally, infusion of amino acids in humans leads to the concomitant activation of S6K1, phosphorylation of IRS-1 Ser-1101, a reduction in IRS-1 function, and insulin resistance in skeletal muscle. These findings indicate that nutrient- and hormonal-dependent activation of S6K1 causes insulin resistance in mice and humans, in part, by mediating IRS-1 Ser-1101 phosphorylation. Topics: Animals; Humans; Insulin Receptor Substrate Proteins; Insulin Resistance; Mice; Nutritional Status; Obesity; Phosphoproteins; Phosphorylation; RNA, Messenger; RNA, Small Interfering; Serine; Sirolimus | 2007 |
Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle.
Leucine is recognized as a nutrient signal; however, the long-term in vivo consequences of leucine signaling and the role of branched-chain amino acid (BCAA) metabolism in this signaling remain unclear. To investigate these questions, we disrupted the BCATm gene, which encodes the enzyme catalyzing the first step in peripheral BCAA metabolism. BCATm(-/-) mice exhibited elevated plasma BCAAs and decreased adiposity and body weight, despite eating more food, along with increased energy expenditure, remarkable improvements in glucose and insulin tolerance, and protection from diet-induced obesity. The increased energy expenditure did not seem to be due to altered locomotor activity, uncoupling proteins, sympathetic activity, or thyroid hormones but was strongly associated with food consumption and an active futile cycle of increased protein degradation and synthesis. These observations suggest that elevated BCAAs and/or loss of BCAA catabolism in peripheral tissues play an important role in regulating insulin sensitivity and energy expenditure. Topics: Adipose Tissue; Animals; Body Weight; Diet; Eating; Energy Metabolism; Female; Gene Targeting; Glucose Tolerance Test; Humans; Insulin; Leucine; Male; Mice; Mice, Knockout; Obesity; Organ Size; Oxygen Consumption; Protein Kinases; Proteins; Sirolimus; Substrate Cycling; Thermogenesis; TOR Serine-Threonine Kinases; Transaminases | 2007 |
Neuroscience. Regulating energy balance: the substrate strikes back.
Topics: AMP-Activated Protein Kinases; Animals; Appetite; Body Weight; Diet; Eating; Energy Metabolism; Homeostasis; Hypothalamus; Leptin; Leucine; Multienzyme Complexes; Neural Pathways; Neurons; Obesity; Protein Kinases; Protein Serine-Threonine Kinases; Rats; Ribosomal Protein S6 Kinases; Signal Transduction; Sirolimus; Starvation; Thinness; TOR Serine-Threonine Kinases | 2006 |
The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease.
To pursue a systematic approach to the discovery of functional connections among diseases, genetic perturbation, and drug action, we have created the first installment of a reference collection of gene-expression profiles from cultured human cells treated with bioactive small molecules, together with pattern-matching software to mine these data. We demonstrate that this "Connectivity Map" resource can be used to find connections among small molecules sharing a mechanism of action, chemicals and physiological processes, and diseases and drugs. These results indicate the feasibility of the approach and suggest the value of a large-scale community Connectivity Map project. Topics: Alzheimer Disease; Cell Line; Cell Line, Tumor; Databases, Factual; Dexamethasone; Drug Evaluation, Preclinical; Drug Resistance, Neoplasm; Enzyme Inhibitors; Estrogens; Gene Expression; Gene Expression Profiling; Histone Deacetylase Inhibitors; HSP90 Heat-Shock Proteins; Humans; Limonins; Obesity; Oligonucleotide Array Sequence Analysis; Phenothiazines; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Sirolimus; Software | 2006 |
Insulin stimulation of muscle protein synthesis in obese Zucker rats is not via a rapamycin-sensitive pathway.
The obese Zucker rat is resistant to insulin for glucose disposal, but it is unknown whether this insulin resistance is accompanied by alterations of insulin-mediated muscle protein synthesis. We examined rates of muscle protein synthesis either with or without insulin in lean and obese Zucker rats with the use of a bilateral hindlimb preparation. Additional experiments examined insulin's effect on protein synthesis with or without rapamycin, an inhibitor of protein synthesis. Protein synthesis in red and white gastrocnemius was stimulated by insulin compared with control (no insulin) in obese (n = 10, P<0.05) but not in lean (n = 10, P>0.05) Zucker rats. In white gastrocnemius, rapamycin significantly reduced rates of protein synthesis compared with control in lean (n = 6) and obese (n = 6) rats; however, in red gastrocnemius, the attenuating effect of rapamycin occurred only in obese rats. The addition of insulin to rapamycin resulted in rates of synthesis that were similar to those for rapamycin alone for lean rats and to those for insulin alone (augmented) for obese rats in both tissues. Our results demonstrate that insulin enhances protein synthesis in muscle that is otherwise characterized as insulin resistant. Furthermore, rapamycin inhibits protein synthesis in muscle of obese Zucker rats; however, stimulation of protein synthesis by insulin is not via a rapamycin-sensitive pathway. Topics: Animals; Drug Combinations; Insulin; Muscle Proteins; Obesity; Protein Synthesis Inhibitors; Rats; Rats, Zucker; Reference Values; Ribosomal Protein S6 Kinases; Signal Transduction; Sirolimus | 2000 |
Leptin stimulates glucose transport and glycogen synthesis in C2C12 myotubes: evidence for a P13-kinase mediated effect.
It was recently shown that leptin impairs insulin signalling, i.e. insulin receptor autophosphorylation and insulin-receptor substrate (IRS)-1 phosphorylation in rat-1 fibroblasts, NIH3T3 cells and HepG2 cells. To evaluate whether leptin might impair the effects of insulin in muscle tissue we studied the interaction of insulin and leptin in a muscle cell system, i.e. C2C12 myotubes. Preincubation of C2C12 cells with leptin (1-500 ng/ml) did not significantly affect insulin stimulated glucose transport and glycogen synthesis (1.8 to 2 fold stimulation); however, leptin by itself (1 ng/ml) was able to mimic approximately 80-90% of the insulin effect on glucose transport and glycogen synthesis. Both glucose transport as well as glycogen synthesis were inhibited by the phosphatidylinositol-3 (PI3)-kinase inhibitor wortmannin and the protein kinase C inhibitor H7 while no effect was observed with the S6-kinase inhibitor rapamycin. We determined whether the effect of leptin occurs through activation of IRS-1 and PI3-kinase. Leptin did not stimulate PI3-kinase activity in IRS-1 immunoprecipitates; however, PI3-kinase activation could be demonstrated in p85 alpha immunoprecipitates (3.04 +/- 1.5 fold of basal). In summary the data provide the first evidence for a positive crosstalk between the signalling chain of the insulin receptor and the leptin receptor. Leptin mimics in C2C12 myotubes insulin effects on glucose transport and glycogen synthesis most likely through activation of PI3-kinase. This effect of leptin occurs independently of IRS-1 activation in C2C12 cells. Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Androstadienes; Animals; Biological Transport; Cell Line; Deoxyglucose; Enzyme Inhibitors; Glucose; Glycogen; Insulin; Kinetics; Leptin; Muscle Fibers, Skeletal; Obesity; Phosphatidylinositol 3-Kinases; Phosphotransferases (Alcohol Group Acceptor); Polyenes; Proteins; Rats; Sirolimus; Wortmannin | 1997 |
Insulin stimulation of mitogen-activated protein kinase, p90rsk, and p70 S6 kinase in skeletal muscle of normal and insulin-resistant mice. Implications for the regulation of glycogen synthase.
Skeletal muscles from mice stimulated with insulin in vivo were used to evaluate relationships between the insulin receptor tyrosine kinase, mitogen-activated protein (MAP) kinase, p90rsk, p70 S6 kinase (p70S6k), and glycogen synthase. Two models of insulin resistance were also evaluated: (a) transgenic mice with a severe insulin receptor defect and (b) gold thioglucose (GTG) mice (obesity with minimal insulin receptor dysfunction). In normal mice, insulin stimulated MAP kinase (6-fold), p90rsk (RSK2, 5-fold), p70S6k (10-fold), and glycogen synthase (30-50% increase in fractional velocity). In transgenic mice, stimulation of MAP kinase and RSK2 were not detectable, whereas activation of p70S6k and glycogen synthase were preserved. In GTG mice, activation of MAP kinase, RSK2, p70S6k, and glycogen synthase were impaired. Since p70S6k and glycogen synthase were correlated, rapamycin was used to block p70S6k, and glycogen synthase activation was unaffected in normal mice; however, it was partially impaired in transgenic mice.. (a) stimulation of p70S6k and glycogen synthase are selectively preserved in muscles with a severe insulin receptor kinase defect, indicating signal amplification in pathways leading to these effects; (b) MAP kinase-RSK2 and p70S6k activation are impaired in obese mice, suggesting multiple loci for postreceptor insulin resistance; (c) glycogen synthase was dissociated from MAP kinase and RSK2, indicating that they are not required for this effect of insulin; and (d) p70S6k is not essential for glycogen synthase activation, but it may participate in redundant signaling pathways leading to this effect of insulin. Topics: Animals; Aurothioglucose; Enzyme Activation; Gene Expression Regulation, Enzymologic; Glycogen Synthase; Humans; Immunosuppressive Agents; Insulin; Insulin Resistance; Kinetics; Mice; Mice, Transgenic; Muscle, Skeletal; Obesity; Point Mutation; Polyenes; Protein Kinases; Protein Serine-Threonine Kinases; Receptor, Insulin; Reference Values; Ribosomal Protein S6 Kinases; Sirolimus | 1995 |