sirolimus has been researched along with Nerve-Sheath-Neoplasms* in 7 studies
7 other study(ies) available for sirolimus and Nerve-Sheath-Neoplasms
Article | Year |
---|---|
Inhibition of Erb-B2 Receptor Tyrosine Kinase 3 and Associated Regulatory Pathways Potently Impairs Malignant Peripheral Nerve Sheath Tumor Proliferation and Survival.
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, currently untreatable Schwann cell-derived neoplasms with hyperactive mitogen-activated protein kinase and mammalian target of rapamycin signaling pathways. To identify potential therapeutic targets, previous studies used genome-scale shRNA screens that implicated the neuregulin-1 receptor erb-B2 receptor tyrosine kinase 3 (erbB3) in MPNST proliferation and/or survival. The current study shows that erbB3 is commonly expressed in MPNSTs and MPNST cell lines and that erbB3 knockdown inhibits MPNST proliferation and survival. Kinomic and microarray analyses of Schwann and MPNST cells implicate Src- and erbB3-mediated calmodulin-regulated signaling as key pathways. Consistent with this, inhibition of upstream (canertinib, sapitinib, saracatinib, and calmodulin) and parallel (AZD1208) signaling pathways involving mitogen-activated protein kinase and mammalian target of rapamycin reduced MPNST proliferation and survival. ErbB inhibitors (canertinib and sapitinib) or erbB3 knockdown in combination with Src (saracatinib), calmodulin [trifluoperazine (TFP)], or proviral integration site of Moloney murine leukemia kinase (AZD1208) inhibition even more effectively reduces proliferation and survival. Drug inhibition enhances an unstudied calmodulin-dependent protein kinase IIα phosphorylation site in an Src-dependent manner. The Src family kinase inhibitor saracatinib reduces both basal and TFP-induced erbB3 and calmodulin-dependent protein kinase IIα phosphorylation. Src inhibition (saracatinib), like erbB3 knockdown, prevents these phosphorylation events; and when combined with TFP, it even more effectively reduces proliferation and survival compared with monotherapy. These findings implicate erbB3, calmodulin, proviral integration site of Moloney murine leukemia kinases, and Src family members as important therapeutic targets in MPNSTs and demonstrate that combinatorial therapies targeting critical MPNST signaling pathways are more effective. Topics: Animals; Calmodulin; Cell Line, Tumor; Cell Proliferation; Humans; Leukemia; Mammals; Mice; Mitogen-Activated Protein Kinases; Nerve Sheath Neoplasms; Neurofibrosarcoma; Receptor, ErbB-2; Sirolimus; TOR Serine-Threonine Kinases | 2023 |
Dual mTORC1/2 inhibition induces anti-proliferative effect in NF1-associated plexiform neurofibroma and malignant peripheral nerve sheath tumor cells.
Approximately 30-50% of individuals with Neurofibromatosis type 1 develop benign peripheral nerve sheath tumors, called plexiform neurofibromas (PNFs). PNFs can undergo malignant transformation to highly metastatic malignant peripheral nerve sheath tumors (MPNSTs) in 5-10% of NF1 patients, with poor prognosis. No effective systemic therapy is currently available for unresectable tumors. In tumors, the NF1 gene deficiency leads to Ras hyperactivation causing the subsequent activation of the AKT/mTOR and Raf/MEK/ERK pathways and inducing multiple cellular responses including cell proliferation. In this study, three NF1-null MPNST-derived cell lines (90-8, 88-14 and 96-2), STS26T sporadic MPNST cell line and PNF-derived primary Schwann cells were used to test responses to AZD8055, an ATP-competitive "active-site" mTOR inhibitor. In contrast to rapamycin treatment which only partially affected mTORC1 signaling, AZD8055 induced a strong inhibition of mTORC1 and mTORC2 signaling in MPNST-derived cell lines and PNF-derived Schwann cells. AZD8055 induced full blockade of mTORC1 leading to an efficient decrease of global protein synthesis. A higher cytotoxic effect was observed with AZD8055 compared to rapamycin in the NF1-null MPNST-derived cell lines with IC50 ranging from 70 to 140 nM and antiproliferative effect was confirmed in PNF-derived Schwann cells. Cell migration was impaired by AZD8055 treatment and cell cycle analysis showed a G0/G1 arrest. Combined effects of AZD8055 and PD0325901 MEK inhibitor as well as BRD4 (BromoDomain-containing protein 4) inhibitors showed a synergistic antiproliferative effect. These data suggest that NF1-associated peripheral nerve sheath tumors are an ideal target for AZD8055 as a single molecule or in combined therapies. Topics: Antineoplastic Agents; Benzamides; Cell Cycle Proteins; Cell Line, Tumor; Cell Movement; Cell Proliferation; Diphenylamine; Drug Synergism; G1 Phase Cell Cycle Checkpoints; Humans; Inhibitory Concentration 50; MAP Kinase Kinase 1; MAP Kinase Kinase 2; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Morpholines; Nerve Sheath Neoplasms; Neurofibroma, Plexiform; Neurofibromatosis 1; Neurofibromin 1; Nuclear Proteins; Primary Cell Culture; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; ras Proteins; Schwann Cells; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Transcription Factors | 2016 |
Prognostic significance of AKT/mTOR and MAPK pathways and antitumor effect of mTOR inhibitor in NF1-related and sporadic malignant peripheral nerve sheath tumors.
Malignant peripheral nerve sheath tumor (MPNST) is a rare soft tissue sarcoma with poor prognosis. MPNSTs occur frequently in patients with neurofibromatosis type 1 (NF1), in which NF1 gene deficiency leads to Ras hyperactivation. Ras activation causes the subsequent activation of the AKT/mTOR and Raf/MEK/ERK pathways and regulates cellular functions. However, the activation profiles of the AKT/mTOR and MAPK pathways in MPNSTs are poorly understood. The purposes of this study are to examine the correlation between the activation of these pathways and clinicopathologic or prognostic factors and to identify candidate target molecules in MPNST. Moreover, we assessed the antitumor effects of the inhibitor of candidate target.. Immunohistochemistry was conducted to evaluate the activation profiles of AKT/mTOR and MAPK pathways using 135 tumor specimens. Immunohistochemical expressions were confirmed by Western blotting. Then, an in vitro study was conducted to examine the antitumor effect of the mTOR inhibitor on MPNST cell lines.. Phosphorylated-AKT (p-AKT), p-mTOR, p-S6RP, p-p70S6K, p-4E-BP1, p-MEK1/2, and p-ERK1/2 expressions were positive in 58.2%, 47.3%, 53.8%, 57.1%, 62.6%, 93.4%, and 81.3% of primary MPNSTs, respectively. Positivity for each factor showed no difference between NF1-related and sporadic MPNSTs. Univariate prognostic analysis revealed that p-AKT, p-mTOR, and p-S6RP expressions were associated with poor prognosis. Furthermore, activation of each p-mTOR and p-S6RP was an independent poor prognostic factor by multivariate analysis. mTOR inhibition by Everolimus showed antitumor activity on MPNST cell lines in vitro.. mTOR inhibition is a potential treatment option for both NF1-related and sporadic MPNSTs. Topics: Adolescent; Adult; Aged; Aged, 80 and over; Antineoplastic Agents; Cell Line, Tumor; Child; Child, Preschool; Enzyme Activation; Everolimus; Female; Humans; Infant; Male; Middle Aged; Mitogen-Activated Protein Kinases; Nerve Sheath Neoplasms; Neurofibromatosis 1; Prognosis; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Young Adult | 2013 |
Impaired Pten expression in human malignant peripheral nerve sheath tumours.
Malignant peripheral nerve sheath tumours (MPNST) are aggressive sarcomas that develop in about 10% of patients with the genetic disease neurofibromatosis type 1 (NF1). Molecular alterations contributing to MPNST formation have only partially been resolved. Here we examined the role of Pten, a key regulator of the Pi3k/Akt/mTOR pathway, in human MPNST and benign neurofibromas. Immunohistochemistry showed that Pten expression was significantly lower in MPNST (n=16) than in neurofibromas (n=16) and normal nervous tissue. To elucidate potential mechanisms for Pten down-regulation or Akt/mTOR activation in MPNST we performed further experiments. Mutation analysis revealed absence of somatic mutations in PTEN (n=31) and PIK3CA (n=38). However, we found frequent PTEN promotor methylation in primary MPNST (11/26) and MPNST cell lines (7/8) but not in benign nerve sheath tumours. PTEN methylation was significantly associated with early metastasis. Moreover, we detected an inverse correlation of Pten-regulating miR-21 and Pten protein levels in MPNST cell lines. The examination of NF1-/- and NF1+/+Schwann cells and fibroblasts showed that Pten expression is not regulated by NF1. To determine the significance of Pten status for treatment with the mTOR inhibitor rapamycin we treated 5 MPNST cell lines with rapamycin. All cell lines were sensitive to rapamycin without a significant correlation to Pten levels. When rapamycin was combined with simvastatin a synergistic anti-proliferative effect was achieved. Taken together we show frequent loss/reduction of Pten expression in MPNST and provide evidence for the involvement of multiple Pten regulating mechanisms. Topics: Animals; Blotting, Western; Cell Line, Tumor; Drug Synergism; Fibroblasts; Gene Expression Regulation, Neoplastic; Humans; Mice; Nerve Sheath Neoplasms; Neurofibroma; Neurofibromin 1; PTEN Phosphohydrolase; Ribosomal Protein S6 Kinases, 70-kDa; Simvastatin; Sirolimus | 2012 |
Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors.
Ras-driven tumors are often refractory to conventional therapies. Here we identify a promising targeted therapeutic strategy for two Ras-driven cancers: Nf1-deficient malignancies and Kras/p53 mutant lung cancer. We show that agents that enhance proteotoxic stress, including the HSP90 inhibitor IPI-504, induce tumor regression in aggressive mouse models, but only when combined with rapamycin. These agents synergize by promoting irresolvable ER stress, resulting in catastrophic ER and mitochondrial damage. This process is fueled by oxidative stress, which is caused by IPI-504-dependent production of reactive oxygen species, and the rapamycin-dependent suppression of glutathione, an important endogenous antioxidant. Notably, the mechanism by which these agents cooperate reveals a therapeutic paradigm that can be expanded to develop additional combinations. Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzoquinones; Carcinoma, Non-Small-Cell Lung; eIF-2 Kinase; Endoplasmic Reticulum; Fluorescent Antibody Technique; Glutathione; HSP90 Heat-Shock Proteins; In Situ Nick-End Labeling; Lactams, Macrocyclic; Mice; Mitochondria; Molecular Targeted Therapy; Nerve Sheath Neoplasms; Oxidative Stress; Polymerase Chain Reaction; Proto-Oncogene Proteins p21(ras); ras Proteins; Reactive Oxygen Species; RNA Interference; RNA, Small Interfering; Sirolimus; Tumor Cells, Cultured; Tumor Suppressor Protein p53 | 2011 |
Dual targeting of AKT and mammalian target of rapamycin: a potential therapeutic approach for malignant peripheral nerve sheath tumor.
The mammalian target of rapamycin (mTOR) pathway may constitute a potential target for the treatment of malignant peripheral nerve sheath tumors (MPNST). However, investigations of other cancers suggest that mTOR blockade can paradoxically induce activation of prosurvival, protumorigenic signaling molecules, especially upstream AKT. Consequently, we hypothesized that dual phosphatidylinositol 3-kinase (PI3K)/AKT-mTOR blockade might be applicable for MPNST treatment. Expression of activated mTOR downstream targets (p4EBP1 and pS6RP) and pAKT was evaluated immunohistochemically in a tissue microarray of human MPNSTs (n = 96) and benign neurofibromas (n = 31). Results were analyzed by Wilcoxon rank-sum tests. mTOR and AKT pathways in human MPNST cell lines, and the effects of rapamycin (mTOR inhibitor), LY294002 (dual PI3K/mTOR inhibitor), and PI-103 (potent dual PI3K/AKT-mTOR inhibitor) on pathway activation were evaluated by Western blot. Effects on cell growth were evaluated via MTS and colony formation assays. Cell cycle progression and apoptosis were assessed by propidium iodide/fluorescence-activated cell sorting staining and Annexin V assays. Acridine orange staining/fluorescence-activated cell sorting analysis, electron microscopy, and Western blot evaluated autophagy induction. p4EBP1, pS6Rp, and pAKT levels were found to be significantly higher in MPNST versus neurofibroma (P < 0.05 for all markers). mTOR and AKT pathways were found to be highly activated in MPNST cell lines. MPNST cells were sensitive to rapamycin; however, rapamycin enhanced pAKT and peIF4E expression. PI-103 abrogated MPNST cell growth and induced G(1) cell cycle arrest potentially through repression of cyclin D1. PI-103 did not elicit apoptosis but significantly induced autophagy in MPNST cells. These results suggest further study of combined PI3K/AKT and mTOR inhibition as a novel therapy for patients harboring MPNST. Topics: Antineoplastic Agents; Autophagy; Cell Line, Tumor; Cell Proliferation; DNA-Binding Proteins; Furans; Gene Expression Regulation, Enzymologic; Humans; Molecular Targeted Therapy; Nerve Sheath Neoplasms; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyridines; Pyrimidines; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Transcription Factors | 2009 |
Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors.
Malignant peripheral nerve sheath tumors (MPNST) are chemoresistant sarcomas with poor 5-year survival that arise in patients with neurofibromatosis type 1 (NF1) or sporadically. We tested three drugs for single and combinatorial effects on collected MPNST cell lines and in MPNST xenografts. The mammalian target of rapamycin complex 1 inhibitor RAD001 (Everolimus) decreased growth 19% to 60% after 4 days of treatment in NF1 and sporadic-derived MPNST cell lines. Treatment of subcutaneous sporadic MPNST cell xenografts with RAD001 significantly, but transiently, delayed tumor growth, and decreased vessel permeability within xenografts. RAD001 combined with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib caused additional inhibitory effects on growth and apoptosis in vitro, and a small but significant additional inhibitory effect on MPNST growth in vivo that were larger than the effects of RAD001 with doxorubicin. RAD001 plus erlotinib, in vitro and in vivo, reduced phosphorylation of AKT and total AKT levels, possibly accounting for their additive effect. The results support the consideration of RAD001 therapy in NF1 patient and sporadic MPNST. The preclinical tests described allow rapid screening strata for drugs that block MPNST growth, prior to tests in more complex models, and should be useful to identify drugs that synergize with RAD001. Topics: Animals; Antineoplastic Agents; Cell Death; Cell Line, Tumor; Drug Screening Assays, Antitumor; Erlotinib Hydrochloride; Everolimus; Humans; Immunosuppressive Agents; Mice; Mice, Nude; Nerve Sheath Neoplasms; Protein Kinases; Quinazolines; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Up-Regulation | 2008 |