sirolimus and Nerve-Degeneration

sirolimus has been researched along with Nerve-Degeneration* in 22 studies

Reviews

1 review(s) available for sirolimus and Nerve-Degeneration

ArticleYear
Fighting neurodegeneration with rapamycin: mechanistic insights.
    Nature reviews. Neuroscience, 2011, Jul-20, Volume: 12, Issue:8

    A growing number of studies point to rapamycin as a pharmacological compound that is able to provide neuroprotection in several experimental models of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3. In addition, rapamycin exerts strong anti-ageing effects in several species, including mammals. By inhibiting the activity of mammalian target of rapamycin (mTOR), rapamycin influences a variety of essential cellular processes, such as cell growth and proliferation, protein synthesis and autophagy. Here, we review the molecular mechanisms underlying the neuroprotective effects of rapamycin and discuss the therapeutic potential of this compound for neurodegenerative diseases.

    Topics: Humans; Nerve Degeneration; Neurodegenerative Diseases; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases

2011

Other Studies

21 other study(ies) available for sirolimus and Nerve-Degeneration

ArticleYear
A microfluidic approach to rescue ALS motor neuron degeneration using rapamycin.
    Scientific reports, 2021, 09-13, Volume: 11, Issue:1

    TAR DNA-binding protein-43 (TDP-43) is known to accumulate in ubiquitinated inclusions of amyotrophic lateral sclerosis affected motor neurons, resulting in motor neuron degeneration, loss of motor functions, and eventually death. Rapamycin, an mTOR inhibitor and a commonly used immunosuppressive drug, has been shown to increase the survivability of Amyotrophic Lateral Sclerosis (ALS) affected motor neurons. Here we present a transgenic, TDP-43-A315T, mouse model expressing an ALS phenotype and demonstrate the presence of ubiquitinated cytoplasmic TDP-43 aggregates with > 80% cell death by 28 days post differentiation in vitro. Embryonic stem cells from this mouse model were used to study the onset, progression, and therapeutic remediation of TDP-43 aggregates using a novel microfluidic rapamycin concentration gradient generator. Results using a microfluidic device show that ALS affected motor neuron survival can be increased by 40.44% in a rapamycin dosage range between 0.4-1.0 µM.

    Topics: Amyotrophic Lateral Sclerosis; Animals; Cell Survival; DNA-Binding Proteins; Mice, Transgenic; Microfluidics; Motor Neurons; Mutation; Nerve Degeneration; Protein Aggregates; Sirolimus; Transgenes

2021
Activation of Nrf2 in Astrocytes Suppressed PD-Like Phenotypes via Antioxidant and Autophagy Pathways in Rat and Drosophila Models.
    Cells, 2021, 07-21, Volume: 10, Issue:8

    The oxidative-stress-induced impairment of autophagy plays a critical role in the pathogenesis of Parkinson's disease (PD). In this study, we investigated whether the alteration of Nrf2 in astrocytes protected against 6-OHDA (6-hydroxydopamine)- and rotenone-induced PD-like phenotypes, using 6-OHDA-induced rat PD and rotenone-induced Drosophila PD models. In the PD rat model, we found that Nrf2 expression was significantly higher in astrocytes than in neurons. CDDO-Me (CDDO methyl ester, an Nrf2 inducer) administration attenuated PD-like neurodegeneration mainly through Nrf2 activation in astrocytes by activating the antioxidant signaling pathway and enhancing autophagy in the substantia nigra and striatum. In the PD Drosophila model, the overexpression of Nrf2 in glial cells displayed more protective effects than such overexpression in neurons. Increased Nrf2 expression in glial cells significantly reduced oxidative stress and enhanced autophagy in the brain tissue. The administration of the Nrf2 inhibitor ML385 reduced the neuroprotective effect of Nrf2 through the inhibition of the antioxidant signaling pathway and autophagy pathway. The autophagy inhibitor 3-MA partially reduced the neuroprotective effect of Nrf2 through the inhibition of the autophagy pathway, but not the antioxidant signaling pathway. Moreover, Nrf2 knockdown caused neurodegeneration in flies. Treatment with CDDO-Me attenuated the Nrf2-knockdown-induced degeneration in the flies through the activation of the antioxidant signaling pathway and increased autophagy. An autophagy inducer, rapamycin, partially rescued the neurodegeneration in Nrf2-knockdown Drosophila by enhancing autophagy. Our results indicate that the activation of the Nrf2-linked signaling pathways in glial cells plays an important neuroprotective role in PD models. Our findings not only provide a novel insight into the mechanisms of Nrf2-antioxidant-autophagy signaling, but also provide potential targets for PD interventions.

    Topics: Adenine; Animals; Animals, Genetically Modified; Antioxidants; Antiparkinson Agents; Astrocytes; Autophagy; Behavior, Animal; Dihydroxyphenylalanine; Disease Models, Animal; Drosophila melanogaster; Drosophila Proteins; Male; Motor Activity; Nerve Degeneration; NF-E2-Related Factor 2; Oleanolic Acid; Parkinsonian Disorders; Phenotype; Rats, Sprague-Dawley; Repressor Proteins; Rotenone; Signal Transduction; Sirolimus

2021
Disturbed glucose and pyruvate metabolism in glaucoma with neuroprotection by pyruvate or rapamycin.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-29, Volume: 117, Issue:52

    Intraocular pressure-sensitive retinal ganglion cell degeneration is a hallmark of glaucoma, the leading cause of irreversible blindness. Here, we used RNA-sequencing and metabolomics to examine early glaucoma in DBA/2J mice. We demonstrate gene expression changes that significantly impact pathways mediating the metabolism and transport of glucose and pyruvate. Subsequent metabolic studies characterized an intraocular pressure (IOP)-dependent decline in retinal pyruvate levels coupled to dysregulated glucose metabolism prior to detectable optic nerve degeneration. Remarkably, retinal glucose levels were elevated 50-fold, consistent with decreased glycolysis but possibly including glycogen mobilization and other metabolic changes. Oral supplementation of the glycolytic product pyruvate strongly protected from neurodegeneration in both rat and mouse models of glaucoma. Investigating further, we detected mTOR activation at the mechanistic nexus of neurodegeneration and metabolism. Rapamycin-induced inhibition of mTOR robustly prevented glaucomatous neurodegeneration, supporting a damaging role for IOP-induced mTOR activation in perturbing metabolism and promoting glaucoma. Together, these findings support the use of treatments that limit metabolic disturbances and provide bioenergetic support. Such treatments provide a readily translatable strategy that warrants investigation in clinical trials.

    Topics: Animals; Disease Models, Animal; Glaucoma; Glucose; Intraocular Pressure; Mice, Inbred C57BL; Mice, Inbred DBA; Nerve Degeneration; Neuroprotection; Neuroprotective Agents; Pyruvic Acid; Rats, Sprague-Dawley; Retina; Sirolimus; TOR Serine-Threonine Kinases

2020
Rapamycin Protects Spiral Ganglion Neurons from Gentamicin-Induced Degeneration In Vitro.
    Journal of the Association for Research in Otolaryngology : JARO, 2019, Volume: 20, Issue:5

    Gentamicin, one of the most widely used aminoglycoside antibiotics, is known to have toxic effects on the inner ear. Taken up by cochlear hair cells and spiral ganglion neurons (SGNs), gentamicin induces the accumulation of reactive oxygen species (ROS) and initiates apoptosis or programmed cell death, resulting in a permanent and irreversible hearing loss. Since the survival of SGNs is specially required for cochlear implant, new procedures that prevent SGN cell loss are crucial to the success of cochlear implantation. ROS modulates the activity of the mammalian target of rapamycin (mTOR) signaling pathway, which mediates apoptosis or autophagy in cells of different organs. However, whether mTOR signaling plays an essential role in the inner ear and whether it is involved in the ototoxic side effects of gentamicin remain unclear. In the present study, we found that gentamicin induced apoptosis and cell loss of SGNs in vivo and significantly decreased the density of SGN and outgrowth of neurites in cultured SGN explants. The phosphorylation levels of ribosomal S6 kinase and elongation factor 4E binding protein 1, two critical kinases in the mTOR complex 1 (mTORC1) signaling pathway, were modulated by gentamicin application in the cochlea. Meanwhile, rapamycin, a specific inhibitor of mTORC1, was co-applied with gentamicin to verify the role of mTOR signaling. We observed that the density of SGN and outgrowth of neurites were significantly increased by rapamycin treatment. Our finding suggests that mTORC1 is hyperactivated in the gentamicin-induced degeneration of SGNs, and rapamycin promoted SGN survival and outgrowth of neurites.

    Topics: Animals; Cells, Cultured; Female; Gentamicins; Male; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Mice; Mice, Inbred C57BL; Nerve Degeneration; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; Spiral Ganglion

2019
DT-diaphorase Protects Against Autophagy Induced by Aminochrome-Dependent Alpha-Synuclein Oligomers.
    Neurotoxicity research, 2017, Volume: 32, Issue:3

    Alpha-synuclein (SNCA) oligomers have been reported to inhibit autophagy. Aminochrome-induced SNCA oligomers are neurotoxic, but the flavoenzyme DT-diaphorase prevents both their formation and their neurotoxicity. However, the possible protective role of DT-diaphorase against autophagy impairment by aminochrome-induced SNCA oligomers remains unclear. To test this idea, we used the cell line RCSN-3NQ7SNCA, with constitutive expression of a siRNA against DT-diaphorase and overexpression SNCA, and RCSN-3 as control cells. A significant increase in LC3-II expression was observed in RCSN-3 cells treated with 20 μM aminochrome and 10 μM rapamycin followed by a decrease in cell death compared to RCSN-3 cells incubated with 20 μM aminochrome alone. The incubation of RCSN-3NQ7SNCA cells with 20 μM aminochrome and 10 μM rapamycin does not change the expression of LC3-II in comparison with RCSN-3NQ7SNCA cells incubated with 20 μM aminochrome alone. The incubation of both cell lines preincubated with 100 nM bafilomycin and 20 μM aminochrome increases the level of LC3-II. Under the same conditions, cell death increases in both cell lines in comparison with cells incubated with 20 μM aminochrome. These results support the protective role of DT-diaphorase against SNCA oligomers-induced autophagy inhibition.

    Topics: alpha-Synuclein; Animals; Autophagy; Cell Line; Cell Survival; Gene Expression; HEK293 Cells; Humans; Indolequinones; Macrolides; Microtubule-Associated Proteins; NAD(P)H Dehydrogenase (Quinone); Nerve Degeneration; Neuroprotection; Rats; RNA, Small Interfering; Sirolimus

2017
Neuroprotective effects of intrastriatal injection of rapamycin in a mouse model of excitotoxicity induced by quinolinic acid.
    Journal of neuroinflammation, 2017, 01-31, Volume: 14, Issue:1

    The mammalian target of rapamycin (mTOR) is a kinase involved in a variety of physiological and pathological functions. However, the exact role of mTOR in excitotoxicity is poorly understood. Here, we investigated the effects of mTOR inhibition with rapamycin against neurodegeneration, and motor impairment, as well as inflammatory profile caused by an excitotoxic stimulus.. A single and unilateral striatal injection of quinolinic acid (QA) was used to induce excitotoxicity in mice. Rapamycin (250 nL of 0.2, 2, or 20 μM; intrastriatal route) was administered 15 min before QA injection. Forty-eight hours after QA administration, rotarod test was performed to evaluate motor coordination and balance. Fluoro-Jade C, Iba-1, and GFAP staining were used to evaluate neuronal cell death, microglia morphology, and astrocytes density, respectively, at this time point. Levels of cytokines and neurotrophic factors were measured by ELISA and Cytometric Bead Array 8 h after QA injection. Striatal synaptosomes were used to evaluate the release of glutamate.. We first demonstrated that rapamycin prevented the motor impairment induced by QA. Moreover, mTOR inhibition also reduced the neurodegeneration and the production of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α induced by excitotoxic stimulus. The lowest dose of rapamycin also increased the production of IL-10 and prevented the reduction of astrocyte density induced by QA. By using an in vitro approach, we demonstrated that rapamycin differently alters the release of glutamate from striatal synaptosomes induced by QA, reducing or enhancing the release of this neurotransmitter at low or high concentrations, respectively.. Taken together, these data demonstrated a protective effect of rapamycin against an excitotoxic stimulus. Therefore, this study provides new evidence of the detrimental role of mTOR in neurodegeneration, which might represent an important target for the treatment of neurodegenerative diseases.

    Topics: Animals; Body Weight; Corpus Striatum; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Glutamic Acid; Male; Mice; Mice, Inbred C57BL; Movement Disorders; Nerve Degeneration; Neuroglia; Neurons; Neuroprotective Agents; Neurotoxicity Syndromes; Postural Balance; Potassium Chloride; Quinolinic Acid; Sirolimus; Synaptosomes

2017
Insulin/IGF1 signaling inhibits age-dependent axon regeneration.
    Neuron, 2014, Feb-05, Volume: 81, Issue:3

    The ability of injured axons to regenerate declines with age, yet the mechanisms that regulate axon regeneration in response to age are not known. Here we show that axon regeneration in aging C. elegans motor neurons is inhibited by the conserved insulin/IGF1 receptor DAF-2. DAF-2's function in regeneration is mediated by intrinsic neuronal activity of the forkhead transcription factor DAF-16/FOXO. DAF-16 regulates regeneration independently of lifespan, indicating that neuronal aging is an intrinsic, neuron-specific, and genetically regulated process. In addition, we found that DAF-18/PTEN inhibits regeneration independently of age and FOXO signaling via the TOR pathway. Finally, DLK-1, a conserved regulator of regeneration, is downregulated by insulin/IGF1 signaling, bound by DAF-16 in neurons, and required for both DAF-16- and DAF-18-mediated regeneration. Together, our data establish that insulin signaling specifically inhibits regeneration in aging adult neurons and that this mechanism is independent of PTEN and TOR.

    Topics: Aging; Animals; Animals, Genetically Modified; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Disease Models, Animal; Forkhead Transcription Factors; Gene Expression Regulation; Green Fluorescent Proteins; Humans; Immunosuppressive Agents; Insulin; Insulin-Like Growth Factor I; Nerve Degeneration; Nerve Regeneration; Phosphotransferases (Alcohol Group Acceptor); PTEN Phosphohydrolase; Signal Transduction; Sirolimus; Time Factors; Transcription Factors

2014
Axonal protection by modulation of p62 expression in TNF-induced optic nerve degeneration.
    Neuroscience letters, 2014, Oct-03, Volume: 581

    p62, which is also called sequestosome 1 (SQSTM1), plays a critical role in neuronal cell death. However, the role of p62 in axonal degeneration remains unclear. We evaluated whether the modulation of p62 expression may affect axonal loss in tumor necrosis factor (TNF)-induced optic nerve degeneration. Immunoblot analysis showed that p62 was upregulated in the optic nerve after intravitreal injection of TNF. Treatment with p62 small interfering RNA (siRNA) exerted a partial but significant protective effect against TNF-induced axonal loss. Rapamycin exerted substantial axonal protection after TNF injection. We found that the increase in p62 was significantly inhibited by p62 siRNA. Treatment with rapamycin also significantly inhibited increased p62 protein levels induced by TNF. These results suggest that the upregulation of p62 may be involved in TNF-induced axonal degeneration and that decreased p62 levels may lead to axonal protection.

    Topics: Animals; Axons; Heat-Shock Proteins; Male; Nerve Degeneration; Neuroprotective Agents; Optic Nerve Diseases; Rats, Wistar; Sequestosome-1 Protein; Sirolimus; Tumor Necrosis Factor-alpha

2014
Acute focal brain damage alters mitochondrial dynamics and autophagy in axotomized neurons.
    Cell death & disease, 2014, Nov-27, Volume: 5

    Mitochondria are key organelles for the maintenance of life and death of the cell, and their morphology is controlled by continual and balanced fission and fusion dynamics. A balance between these events is mandatory for normal mitochondrial and neuronal function, and emerging evidence indicates that mitochondria undergo extensive fission at an early stage during programmed cell death in several neurodegenerative diseases. A pathway for selective degradation of damaged mitochondria by autophagy, known as mitophagy, has been described, and is of particular importance to sustain neuronal viability. In the present work, we analyzed the effect of autophagy stimulation on mitochondrial function and dynamics in a model of remote degeneration after focal cerebellar lesion. We provided evidence that lesion of a cerebellar hemisphere causes mitochondria depolarization in axotomized precerebellar neurons associated with PTEN-induced putative kinase 1 accumulation and Parkin translocation to mitochondria, block of mitochondrial fusion by Mfn1 degradation, increase of calcineurin activity and dynamin-related protein 1 translocation to mitochondria, and consequent mitochondrial fission. Here we suggest that the observed neuroprotective effect of rapamycin is the result of a dual role: (1) stimulation of autophagy leading to damaged mitochondria removal and (2) enhancement of mitochondria fission to allow their elimination by mitophagy. The involvement of mitochondrial dynamics and mitophagy in brain injury, especially in the context of remote degeneration after acute focal brain damage, has not yet been investigated, and these findings may offer new target for therapeutic intervention to improve functional outcomes following acute brain damage.

    Topics: Acute Disease; Animals; Autophagy; Axotomy; Brain Injuries; Calcineurin; Cerebellum; Dynamins; Membrane Potential, Mitochondrial; Mice, Inbred C57BL; Mitochondria; Mitochondrial Dynamics; Mitophagy; Models, Biological; Nerve Degeneration; Neurons; Sirolimus

2014
Autophagy alleviates neurodegeneration caused by mild impairment of oxidative metabolism.
    Journal of neurochemistry, 2013, Volume: 126, Issue:6

    Thiamine deficiency (TD) causes mild impairment of oxidative metabolism and region-selective neuronal loss in the brain, which may be mediated by neuronal oxidative stress, endoplasmic reticulum (ER) stress, and neuroinflammation. TD-induced brain damage is used to model neurodegenerative disorders, and the mechanism for the neuronal death is still unclear. We hypothesized that autophagy might be activated in the TD brain and play a protective role in TD-induced neuronal death. Our results demonstrated that TD induced the accumulation of autophagosomes in thalamic neurons measured by transmission electron microscopy, and the up-regulation of autophagic markers LC3-II, Atg5, and Beclin1 as measured with western blotting. TD also increased the expression of autophagic markers and induced LC3 puncta in SH-SY5Y neuroblastoma cells. TD-induced expression of autophagic markers was reversed once thiamine was re-administered. Both inhibition of autophagy by wortmannin and Beclin1 siRNA potentiated TD-induced death of SH-SY5Y cells. In contrast, activation of autophagy by rapamycin alleviated cell death induced by TD. Intraperitoneal injection of rapamycin stimulated neuronal autophagy and attenuated TD-induced neuronal death and microglia activation in the submedial thalamus nucleus (SmTN). TD inhibited the phosphorylation of p70S6 kinase, suggesting mTOR/p70S6 kinase pathway was involved in the TD-induced autophagy. These results suggest that autophagy is neuroprotective in response to TD-induced neuronal death in the central nervous system. This opens a potential therapeutic avenue for neurodegenerative diseases caused by mild impairment of oxidative metabolism. Autophagy is neuroprotective in response to thiamine deficiency (TD)-induced neuronal death. TD caused neuronal damage and induced the formation of autophagosome, and increased the expression of autophagy-related proteins. Autophagy sequestered damaged and dysfunctional organelles/protein, and transported them to lysosomes for degradation/recycling. This process provided nutrients for injured neurons. Wortmannin and knockdown of Beclin1 inhibited autophagy, and exacerbated TD-induced cell death, while activation of autophagy by rapamycin offered protection against TD neurotoxicity.

    Topics: Androstadienes; Animals; Anti-Bacterial Agents; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Beclin-1; Blotting, Western; Cell Death; Cell Line; Down-Regulation; Humans; Immunohistochemistry; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; Microscopy, Electron, Transmission; Microtubule-Associated Proteins; Nerve Degeneration; Oxidation-Reduction; Phagosomes; RNA, Small Interfering; Sirolimus; Thalamus; Transfection; Vacuoles; Wortmannin

2013
Ischemia preconditioning is neuroprotective in a rat cerebral ischemic injury model through autophagy activation and apoptosis inhibition.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 2013, Volume: 46, Issue:7

    Sublethal ischemic preconditioning (IPC) is a powerful inducer of ischemic brain tolerance. However, its underlying mechanisms are still not well understood. In this study, we chose four different IPC paradigms, namely 5 min (5 min duration), 5×5 min (5 min duration, 2 episodes, 15-min interval), 5×5×5 min (5 min duration, 3 episodes, 15-min intervals), and 15 min (15 min duration), and demonstrated that three episodes of 5 min IPC activated autophagy to the greatest extent 24 h after IPC, as evidenced by Beclin expression and LC3-I/II conversion. Autophagic activation was mediated by the tuberous sclerosis type 1 (TSC1)-mTor signal pathway as IPC increased TSC1 but decreased mTor phosphorylation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and hematoxylin and eosin staining confirmed that IPC protected against cerebral ischemic/reperfusion (I/R) injury. Critically, 3-methyladenine, an inhibitor of autophagy, abolished the neuroprotection of IPC and, by contrast, rapamycin, an autophagy inducer, potentiated it. Cleaved caspase-3 expression, neurological scores, and infarct volume in different groups further confirmed the protection of IPC against I/R injury. Taken together, our data indicate that autophagy activation might underlie the protection of IPC against ischemic injury by inhibiting apoptosis.

    Topics: Adenine; Animals; Apoptosis; Autophagy; Brain Ischemia; Caspase 3; Cerebrum; Immunosuppressive Agents; In Situ Nick-End Labeling; Ischemic Preconditioning; Male; Nerve Degeneration; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Sirolimus; Time Factors; TOR Serine-Threonine Kinases; Tuberous Sclerosis Complex 1 Protein; Tumor Suppressor Proteins

2013
Axonal protection by Nmnat3 overexpression with involvement of autophagy in optic nerve degeneration.
    Cell death & disease, 2013, Oct-17, Volume: 4

    Axonal degeneration often leads to the death of neuronal cell bodies. Previous studies demonstrated the crucial role of nicotinamide mononucleotide adenylyltransferase (Nmnat) 1, 2, and 3 in axonal protection. In this study, Nmnat3 immunoreactivity was observed inside axons in the optic nerve. Overexpression of Nmnat3 exerts axonal protection against tumor necrosis factor-induced and intraocular pressure (IOP) elevation-induced optic nerve degeneration. Immunoblot analysis showed that both p62 and microtubule-associated protein light chain 3 (LC3)-II were upregulated in the optic nerve after IOP elevation. Nmnat3 transfection decreased p62 and increased LC3-II in the optic nerve both with and without experimental glaucoma. Electron microscopy showed the existence of autophagic vacuoles in optic nerve axons in the glaucoma, glaucoma+Nmnat3 transfection, and glaucoma+rapamycin groups, although preserved myelin and microtubule structures were noted in the glaucoma+Nmnat3 transfection and glaucoma+rapamycin groups. The axonal-protective effect of Nmnat3 was inhibited by 3-methyladenine, whereas rapamycin exerted axonal protection after IOP elevation. We found that p62 was present in the mitochondria and confirmed substantial colocalization of mitochondrial Nmnat3 and p62 in starved retinal ganglion cell (RGC)-5 cells. Nmnat3 transfection decreased p62 and increased autophagic flux in RGC-5 cells. These results suggest that the axonal-protective effect of Nmnat3 may be involved in autophagy machinery, and that modulation of Nmnat3 and autophagy may lead to potential strategies against degenerative optic nerve disease.

    Topics: Adenine; Animals; Autophagy; Axons; Cell Line; Green Fluorescent Proteins; Heat-Shock Proteins; Intraocular Pressure; Male; Microtubule-Associated Proteins; Nerve Degeneration; Neuroprotective Agents; Nicotinamide-Nucleotide Adenylyltransferase; Optic Nerve; Protein Transport; Rats; Rats, Wistar; Retinal Ganglion Cells; Sequestosome-1 Protein; Sirolimus; Subcellular Fractions; Transfection; Tumor Necrosis Factor-alpha

2013
Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice.
    Journal of neurotrauma, 2012, Mar-20, Volume: 29, Issue:5

    The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that negatively regulates autophagy. Rapamycin, an inhibitor of mTOR signaling, can promote autophagy and exert neuroprotective effects in several diseases of the central nervous system (CNS). In the present study, we examined whether rapamycin treatment promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury (SCI) in mice. Our results demonstrated that the administration of rapamycin significantly decreased the phosphorylation of the p70S6K protein and led to higher expression levels of LC3 and Beclin 1 in the injured spinal cord. In addition, neuronal loss and cell death in the injured spinal cord were significantly reduced in the rapamycin-treated mice compared to the vehicle-treated mice. Furthermore, the rapamycin-treated mice showed significantly higher locomotor function in Basso Mouse Scale (BMS) scores than did the vehicle-treated mice. These results indicate that rapamycin promoted autophagy by inhibiting the mTOR signaling pathway, and reduced neural tissue damage and locomotor impairment after SCI. The administration of rapamycin produced a neuroprotective function at the lesion site following SCI. Rapamycin treatment may represent a novel therapeutic strategy after SCI.

    Topics: Animals; Autophagy; Blotting, Western; Disease Models, Animal; Female; Immunohistochemistry; In Situ Nick-End Labeling; Mice; Mice, Inbred C57BL; Microscopy, Confocal; Motor Activity; Nerve Degeneration; Neuroprotective Agents; Sirolimus; Spinal Cord Injuries

2012
Stimulation of autophagy by rapamycin protects neurons from remote degeneration after acute focal brain damage.
    Autophagy, 2012, Feb-01, Volume: 8, Issue:2

    Autophagy is the evolutionarily conserved degradation and recycling of cellular constituents. In mammals, autophagy is implicated in the pathogenesis of many neurodegenerative diseases. However, its involvement in acute brain damage is unknown. This study addresses the function of autophagy in neurodegeneration that has been induced by acute focal cerebellar lesions. We provide morphological, ultrastructural, and biochemical evidence that lesions in a cerebellar hemisphere activate autophagy in axotomized precerebellar neurons. Through time course analyses of the apoptotic cascade, we determined mitochondrial dysfunction to be the early trigger of degeneration. Further, the stimulation of autophagy by rapamycin and the employment of mice with impaired autophagic responses allowed us to demonstrate that autophagy protects from damage promoting functional recovery. These findings have therapeutic significance, demonstrating the potential of pro-autophagy treatments for acute brain pathologies, such as stroke and brain trauma.

    Topics: Animals; Apoptosis Regulatory Proteins; Autophagy; Axotomy; Beclin-1; Brain Injuries; Cerebellum; Chloroquine; Cytochromes c; Cytoprotection; Mice; Mice, Inbred C57BL; Mitochondria; Nerve Degeneration; Neurons; Neuroprotective Agents; Phagosomes; Sirolimus

2012
A brain aggregate model gives new insights into the pathobiology and treatment of prion diseases.
    Journal of neuropathology and experimental neurology, 2012, Volume: 71, Issue:5

    Brain aggregates (BrnAggs) derived from fetal mouse brains contain mature neurons and glial cells. We determined that BrnAggs are consistently infected with Rocky Mountain Laboratory scrapie strain prions and produce increasing levels of the pathogenic form of the prion protein (PrP). Their abundant dendrites undergo degeneration shortly after prion infection. Treatment of prion-infected BrnAggs with drugs, such as a γ-secretase inhibitors and quinacrine (Qa), which stop PrP formation and dendritic degeneration, mirrors the results from rodent studies. Because PrP is trafficked into lysosomes by endocytosis and autophagosomes by phagocytosis in neurons of prion strain-infected BrnAggs, we studied the effects of drugs that modulate subcellular trafficking. Rapamycin (Rap), which activates autophagy, markedly increased light-chain 3-II (LC3-II)-positive autophagosomes and cathepsin D-positive lysosomes in BrnAggs but could not eliminate the intracellular PrP within them. Adding Qa to Rap markedly reduced the number of LC3-II-positive autolysosomes. Rap + Qa created a competition between Rap increasing and Qa decreasing LC3-II. Rapamycin + Qa decreased total PrP by 56% compared with that of Qa alone, which reduced PrP by 37% relative to Rap alone. We conclude that the decrease was dominated by the ability of Qa to decrease the formation of PrP. Therefore, BrnAggs provide an efficient in vitro tool for screening drug therapies and studying the complex biology of prions.

    Topics: Alanine; Animals; Azepines; Brain; Cathepsin D; Dendrites; Disease Models, Animal; Embryo, Mammalian; Enzyme Inhibitors; Female; Gene Expression Regulation; Immunosuppressive Agents; In Vitro Techniques; Lysosomes; Male; Mice; Mice, Knockout; Microglia; Microscopy, Confocal; Microtubule-Associated Proteins; Nerve Degeneration; Nerve Tissue Proteins; Pregnancy; Prion Diseases; Prion Proteins; Prions; Protein Transport; PrPSc Proteins; Quinacrine; Sirolimus; Subcellular Fractions; Time Factors

2012
Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats.
    The American journal of pathology, 2012, Volume: 181, Issue:2

    Age-related macular degeneration, a neurodegenerative and vascular retinal disease, is the most common cause of blindness in the Western countries. Evidence accumulates that target of rapamycin is involved in aging and age-related diseases, including neurodegeneration. The target of rapamycin inhibitor, rapamycin, suppresses the senescent cell phenotype and extends life span in diverse species, including mice. Rapamycin decreases senescence-associated phenotypes in retinal pigment epithelial cells in culture. Herein, we investigated the effect of rapamycin on spontaneous retinopathy in senescence-accelerated OXYS rats, an animal model of age-related macular degeneration. Rats were treated with either 0.1 or 0.5 mg/kg rapamycin, which was given orally as a food mixture. In a dose-dependent manner, rapamycin decreased the incidence and severity of retinopathy. Rapamycin improved some (but not all) histological abnormalities associated with retinopathy. Thus, in retinal pigment epithelial cell layers, rapamycin decreased nuclei heterogeneity and normalized intervals between nuclei. In photoreceptor cells, associated neurons, and radial glial cells, rapamycin prevented nuclear and cellular pyknosis. More important, rapamycin prevented destruction of ganglionar neurons in the retina. Rapamycin did not exert any adverse effects on the retina in control disease-free Wistar rats. Taken together, our data suggest the therapeutic potential of rapamycin for treatment and prevention of retinopathy.

    Topics: Animals; Choroid; Macular Degeneration; Mice; Nerve Degeneration; Phosphorylation; Rats; Rats, Wistar; Retinal Pigment Epithelium; Ribosomal Protein S6; Sirolimus; TOR Serine-Threonine Kinases

2012
Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line.
    Toxicological sciences : an official journal of the Society of Toxicology, 2011, Volume: 121, Issue:2

    Aminochrome, the precursor of neuromelanin, has been proposed to be involved in the neurodegeneration neuromelanin-containing dopaminergic neurons in Parkinson's disease. We aimed to study the mechanism of aminochrome-dependent cell death in a cell line derived from rat substantia nigra. We found that aminochrome (50μM), in the presence of NAD(P)H-quinone oxidoreductase, EC 1.6.99.2 (DT)-diaphorase inhibitor dicoumarol (DIC) (100μM), induces significant cell death (62 ± 3%; p < 0.01), increase in caspase-3 activation (p < 0.001), release of cytochrome C, disruption of mitochondrial membrane potential (p < 0.01), damage of mitochondrial DNA, damage of mitochondria determined with transmission electron microscopy, a dramatic morphological change characterized as cell shrinkage, and significant increase in number of autophagic vacuoles. To determine the role of autophagy on aminochrome-induced cell death, we incubated the cells in the presence of vinblastine and rapamycin. Interestingly, 10μM vinblastine induces a 5.9-fold (p < 0.001) and twofold (p < 0.01) significant increase in cell death when the cells were incubated with 30μM aminochrome in the absence and presence of DIC, respectively, whereas 10μM rapamycin preincubated 24 h before addition of 50μM aminochrome in the absence and the presence of 100μM DIC induces a significant decrease (p < 0.001) in cell death. In conclusion, autophagy seems to be an important protective mechanism against two different aminochrome-induced cell deaths that initially showed apoptotic features. The cell death induced by aminochrome when DT-diaphorase is inhibited requires activation of mitochondrial pathway, whereas the cell death induced by aminochrome alone requires inhibition of autophagy-dependent degrading of damaged organelles and recycling through lysosomes.

    Topics: Animals; Autophagy; Caspase 3; Cell Death; Cell Line; Cytochromes c; DNA, Mitochondrial; Indolequinones; Melanins; Membrane Potential, Mitochondrial; Microscopy, Electron, Transmission; Mitochondria; NAD(P)H Dehydrogenase (Quinone); Nerve Degeneration; Rats; Sirolimus; Substantia Nigra; Vinblastine

2011
Variations in the effects on synthesis of amyloid beta protein in modulated autophagic conditions.
    Neurological research, 2009, Volume: 31, Issue:9

    Autophagy, the intracellular breakdown system for proteins and some organelles, is considered to be important in neurodegenerative disease. Recent reports suggest that autophagy plays an important role in Alzheimer's disease pathogenesis and autophagic vacuoles (AVs) may be sites of amyloid beta protein (Abeta) generation. We attempted to determine if imposed changes in autophagic activity are linked to Abeta generation and secretion in cultured cells.. We used Chinese hamster ovary cells, stably expressing wild-type APP 751. We treated the cells with three known autophagy modulating conditions, rapamycin treatment, U18666A treatment and cholesterol depletion.. All the three conditions resulted in increased levels of LC3-II by western blotting, together with an increase in the number of LC3-positive granules. However, the effects on Abeta production were inconsistent. The rapamycin treatment increased Abeta production and secretion, but the other two conditions had opposite effects. When the level of phosphorylation of the mammalian target of rapamycin (mTOR) was measured, down-regulation of phosphorylated mTOR levels was observed only in rapamycin-treated cells. The LC3-positive granules in the U18666A-treated and cholesterol-depleted cells were different from those in rapamycin-treated cells in terms of number, size and distribution, suggesting that degradative process from autophagosomes to lysosomes was disturbed.. The biochemical pathways leading to autophagy and the generation of AVs appear to be different in cells treated by the three methods. These differences may explain why the similar autophagic status determined by LC3 immunoreactivities does not correlate with Abeta generation and secretion.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Androstenes; Animals; Antibiotics, Antineoplastic; Autophagy; CHO Cells; Cholesterol; Cricetinae; Cricetulus; Down-Regulation; Enzyme Inhibitors; Intracellular Signaling Peptides and Proteins; Microtubule-Associated Proteins; Nerve Degeneration; Neurons; Phagosomes; Phosphorylation; Protein Serine-Threonine Kinases; Sirolimus; TOR Serine-Threonine Kinases; Vacuoles

2009
An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity.
    Autophagy, 2009, Volume: 5, Issue:5

    The ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are the two most important components of cellular mechanisms for protein degradation. In the present study we investigated the functional relationship of the two systems and the interactional role of p53 in vitro. Our study showed that the proteasome inhibitor lactacystin induced an increase in p53 level and autophagy activity, whereas inhibition of p53 by pifithrin-alpha or small interference RNA (siRNA) of p53 attenuated the autophagy induction and increased protein aggregation. Furthermore, we found that pretreatment with the autophagy inhibitor 3-methyladenine or beclin 1 siRNA further activated p53 and its downstream apoptotic pathways, while the autophagy inducer rapamycin showed the opposite effects. Moreover, we demonstrated that rapamycin pretreatment increased tyrosine hydroxylase (TH) protein level in dopamine (DA) neurons, which was associated with its induction of autophagy to degrade aggregated proteins. Our results suggest that p53 can mediate proteasomal inhibition-induced autophagy enhancement which in turn can partially block p53 or its downstream mitochondria-dependent apoptotic pathways. Further autophagy induction with rapamycin protects DA neurons from lactacystin-mediated cell death by downregulating p53 and its related apoptotic pathways and by inducing autophagy to degrade aggregated proteins. Therefore, rapamycin may be a promising drug for protection against neuronal injury relevant to Parkinson disease (PD). Our studies thus provide a mechanistic insight into the functional link between the two protein degradation systems.

    Topics: Acetylcysteine; Apoptosis; Autophagy; Cell Line, Tumor; Cytoprotection; Dopamine; Enzyme Inhibitors; Humans; Mitochondria; Nerve Degeneration; Neurons; Phagosomes; Phosphorylation; Proteasome Inhibitors; Protein Processing, Post-Translational; Sirolimus; Time Factors; Tumor Suppressor Protein p53

2009
Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss.
    Nature neuroscience, 2009, Volume: 12, Issue:9

    Mutations in PINK1 and PARK2 cause autosomal recessive parkinsonism, a neurodegenerative disorder that is characterized by the loss of dopaminergic neurons. To discover potential therapeutic pathways, we identified factors that genetically interact with Drosophila park and Pink1. We found that overexpression of the translation inhibitor Thor (4E-BP) can suppress all of the pathologic phenotypes, including degeneration of dopaminergic neurons in Drosophila. 4E-BP is activated in vivo by the TOR inhibitor rapamycin, which could potently suppress pathology in Pink1 and park mutants. Rapamycin also ameliorated mitochondrial defects in cells from individuals with PARK2 mutations. Recently, 4E-BP was shown to be inhibited by the most common cause of parkinsonism, dominant mutations in LRRK2. We also found that loss of the Drosophila LRRK2 homolog activated 4E-BP and was also able to suppress Pink1 and park pathology. Thus, in conjunction with recent findings, our results suggest that pharmacologic stimulation of 4E-BP activity may represent a viable therapeutic approach for multiple forms of parkinsonism.

    Topics: Animals; Animals, Genetically Modified; Cell Survival; Dopamine; Drosophila; Drosophila Proteins; Fibroblasts; Glutathione Transferase; Humans; Intracellular Signaling Peptides and Proteins; Locomotion; Mitochondria; Muscles; Nerve Degeneration; Neurons; Neuroprotective Agents; Peptide Initiation Factors; Protein Serine-Threonine Kinases; Sirolimus; Ubiquitin-Protein Ligases

2009
Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement.
    Neurobiology of disease, 2008, Volume: 32, Issue:1

    The ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are the two most important cellular mechanisms for protein degradation. To investigate the role of autophagy in reversing neuronal injury, the proteasome inhibitor lactacystin was used to cause UPS dysfunction in differentiated PC12 cells and in C57BL/6 mice and rapamycin was used as an autophagy enhancer. The results showed that rapamycin pre-treatment attenuated lactacystin-induced apoptosis and reduced lactacystin-induced ubiquitinated protein aggregation in differentiated PC12 cells. The observed protection was partially blocked by the autophagy inhibitor 3-methyladenine. Furthermore, post-treatment of mice with rapamycin significantly attenuated lactacystin-induced loss of nigral DA neurons and the reduction of striatal DA levels. The lactacystin-induced high molecular ubiquitinated proteins were also attenuated by rapamycin treatment in vivo. In addition, as a chemical compound, rapamycin caused an increase of bcl2 protein level and blocked the release of cytochrome c from mitochondria to cytosal. We concluded that the neuroprotective effect of rapamycin is partially mediated by autophagy enhancement through enhanced degradation of misfolded proteins and autophagy enhancement may be considered to be a promising strategy to prevent diseases associated with misfolded/aggregated proteins, such as Parkinson's disease.

    Topics: Acetylcysteine; Animals; Autophagy; Cells, Cultured; Male; Mice; Mice, Inbred C57BL; Nerve Degeneration; Neuroprotective Agents; Parkinson Disease; PC12 Cells; Protein Folding; Rats; Sirolimus

2008