sirolimus and Myotonic-Dystrophy

sirolimus has been researched along with Myotonic-Dystrophy* in 2 studies

Other Studies

2 other study(ies) available for sirolimus and Myotonic-Dystrophy

ArticleYear
MBNL1 reverses the proliferation defect of skeletal muscle satellite cells in myotonic dystrophy type 1 by inhibiting autophagy via the mTOR pathway.
    Cell death & disease, 2020, 07-18, Volume: 11, Issue:7

    Skeletal muscle atrophy is one of the clinical symptoms of myotonic dystrophy type 1 (DM1). A decline in skeletal muscle regeneration is an important contributor to muscle atrophy. Skeletal muscle satellite cells (SSCs) drive skeletal muscle regeneration. Increased autophagy can reduce the proliferative capacity of SSCs, which plays an important role in the early regeneration of damaged skeletal muscle in DM1. Discovering new ways to restore SSC proliferation may aid in the identification of new therapeutic targets for the treatment of skeletal muscle atrophy in DM1. In the pathogenesis of DM1, muscleblind-like 1 (MBNL1) protein is generally considered to form nuclear RNA foci and disturb the RNA-splicing function. However, the role of MBNL1 in SSC proliferation in DM1 has not been reported. In this study, we obtained SSCs differentiated from normal DM1-04-induced pluripotent stem cells (iPSCs), DM1-03 iPSCs, and DM1-13-3 iPSCs edited by transcription activator-like (TAL) effector nucleases (TALENs) targeting CTG repeats, and primary SSCs to study the pathogenesis of DM1. DM1 SSC lines and primary SSCs showed decreased MBNL1 expression and elevated autophagy levels. However, DM1 SSCs edited by TALENs showed increased cytoplasmic distribution of MBNL1, reduced levels of autophagy, increased levels of phosphorylated mammalian target of rapamycin (mTOR), and improved proliferation rates. In addition, we confirmed that after MBNL1 overexpression, the proliferative capability of DM1 SSCs and the level of phosphorylated mTOR were enhanced, while the autophagy levels were decreased. Our data also demonstrated that the proliferative capability of DM1 SSCs was enhanced after autophagy was inhibited by overexpressing mTOR. Finally, treatment with rapamycin (an mTOR inhibitor) was shown to abolish the increased proliferation capability of DM1 SSCs due to MBNL1 overexpression. Taken together, these data suggest that MBNL1 reverses the proliferation defect of SSCs in DM1 by inhibiting autophagy via the mTOR pathway.

    Topics: Autophagy; Cell Line; Cell Nucleus; Cell Proliferation; Female; Genome; Humans; Male; Middle Aged; Myotonic Dystrophy; Phosphorylation; RNA-Binding Proteins; Satellite Cells, Skeletal Muscle; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Transcription Activator-Like Effector Nucleases

2020
Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I.
    The Journal of clinical investigation, 2017, Feb-01, Volume: 127, Issue:2

    Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3'-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease.

    Topics: Adult; Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Disease Models, Animal; Female; Humans; Male; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Mutant Strains; Middle Aged; Multiprotein Complexes; Muscle Fibers, Skeletal; Muscle Relaxation; Myotonic Dystrophy; Myotonin-Protein Kinase; Ribonucleotides; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases

2017