sirolimus and Leukemia--T-Cell

sirolimus has been researched along with Leukemia--T-Cell* in 3 studies

Trials

1 trial(s) available for sirolimus and Leukemia--T-Cell

ArticleYear
Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2006, Sep-01, Volume: 12, Issue:17

    Everolimus (RAD001, Novartis), an oral derivative of rapamycin, inhibits the mammalian target of rapamycin (mTOR), which regulates many aspects of cell growth and division. A phase I/II study was done to determine safety and efficacy of everolimus in patients with relapsed or refractory hematologic malignancies.. Two dose levels (5 and 10 mg orally once daily continuously) were evaluated in the phase I portion of this study to determine the maximum tolerated dose of everolimus to be used in the phase II study.. Twenty-seven patients (9 acute myelogenous leukemia, 5 myelodysplastic syndrome, 6 B-chronic lymphocytic leukemia, 4 mantle cell lymphoma, 1 myelofibrosis, 1 natural killer cell/T-cell leukemia, and 1 T-cell prolymphocytic leukemia) received everolimus. No dose-limiting toxicities were observed. Grade 3 potentially drug-related toxicities included hyperglycemia (22%), hypophosphatemia (7%), fatigue (7%), anorexia (4%), and diarrhea (4%). One patient developed a cutaneous leukocytoclastic vasculitis requiring a skin graft. One patient with refractory anemia with excess blasts achieved a major platelet response of over 3-month duration. A second patient with refractory anemia with excess blasts showed a minor platelet response of 25-day duration. Phosphorylation of downstream targets of mTOR, eukaryotic initiation factor 4E-binding protein 1, and/or, p70 S6 kinase, was inhibited in six of nine patient samples, including those from the patient with a major platelet response.. Everolimus is well tolerated at a daily dose of 10 mg daily and may have activity in patients with myelodysplastic syndrome. Studies of everolimus in combination with therapeutic agents directed against other components of the phosphatidylinositol 3-kinase/Akt/mTOR pathway are warranted.

    Topics: Adaptor Proteins, Signal Transducing; Administration, Oral; Adolescent; Adult; Aged; Cell Cycle Proteins; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug-Related Side Effects and Adverse Reactions; Everolimus; Female; Humans; Killer Cells, Natural; Leukemia, Lymphocytic, Chronic, B-Cell; Leukemia, Myeloid, Acute; Leukemia, Prolymphocytic; Leukemia, T-Cell; Lymphoma, Mantle-Cell; Male; Maximum Tolerated Dose; Middle Aged; Myelodysplastic Syndromes; Phosphoproteins; Phosphorylation; Protein Kinases; Recurrence; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; T-Lymphocytes; TOR Serine-Threonine Kinases; Treatment Outcome; Vasculitis, Leukocytoclastic, Cutaneous

2006

Other Studies

2 other study(ies) available for sirolimus and Leukemia--T-Cell

ArticleYear
Rapamycin interacts synergistically with idarubicin to induce T-leukemia cell apoptosis in vitro and in a mesenchymal stem cell simulated drug-resistant microenvironment via Akt/mammalian target of rapamycin and extracellular signal-related kinase signali
    Leukemia & lymphoma, 2014, Volume: 55, Issue:3

    T-cell acute lymphoblastic leukemias (T-ALLs) are clonal lymphoid malignancies with a poor prognosis, and still a lack of effective treatment. Here we examined the interactions between the mammalian target of rapamycin (mTOR) inhibitor rapamycin and idarubicin (IDA) in a series of human T-ALL cell lines Molt-4, Jurkat, CCRF-CEM and CEM/C1. Co-exposure of cells to rapamycin and IDA synergistically induced T-ALL cell growth inhibition and apoptosis mediated by caspase activation via the intrinsic mitochondrial pathway and extrinsic pathway. Combined treatment with rapamycin and IDA down-regulated Bcl-2 and Mcl-1, and inhibited the activation of phosphoinositide 3-kinase (PI3K)/mTOR and extracellular signal-related kinase (ERK). They also played synergistic pro-apoptotic roles in the drug-resistant microenvironment simulated by mesenchymal stem cells (MSCs) as a feeder layer. In addition, MSCs protected T-ALL cells from IDA cytotoxicity by up-regulating ERK phosphorylation, while rapamycin efficiently reversed this protective effect. Taken together, we confirm the synergistic antitumor effects of rapamycin and IDA, and provide an insight into the potential future clinical applications of combined rapamycin-IDA regimens for treating T-cell malignancies.

    Topics: Apoptosis; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; Drug Synergism; Extracellular Signal-Regulated MAP Kinases; Humans; Idarubicin; Leukemia, T-Cell; Mesenchymal Stem Cells; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Tumor Microenvironment

2014
Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition.
    Acta pharmacologica Sinica, 2008, Volume: 29, Issue:4

    To examine the ability of rapamycin to suppress growth and regulate telomerase activity in the human T-cell leukemia cell line Jurkat.. Cell proliferation was assessed after exposure to rapamycin by 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle progression and apoptosis were determined by flow cytometry. The proteins important for cell cycle progression and Akt/mammalian target of rapamycin signaling cascade were assessed by Western blotting. Telomerase activity was quantified by telomeric repeat amplication protocol assay. The human telomerase reverse transcriptase (hTERT) mRNA levels were determined by semi-quantitative RT-PCR.. Rapamycin inhibited the proliferation of Jurkat, induced G1 phase arrest, unregulated the protein level of p21 as well as p27, and downregulated cyclinD3, phospho-p70s6k, and phospho-s6, but had no effect on apoptosis. Treatment with rapamycin reduced telomerase activity, and reduced hTERT mRNA and protein expression.. Rapamycin displayed a potent antileukemic effect in the human Tcell leukemia cell line by inhibition of cell proliferation through G1 cell cycle arrest and also through the suppression of telomerase activity, suggesting that rapamycin may have potential clinical implications in the treatment of some leukemias.

    Topics: Antibiotics, Antineoplastic; Apoptosis; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; G1 Phase; Humans; Jurkat Cells; Leukemia, T-Cell; RNA, Messenger; Sirolimus; Telomerase

2008