sirolimus has been researched along with Intervertebral-Disc-Degeneration* in 6 studies
1 review(s) available for sirolimus and Intervertebral-Disc-Degeneration
Article | Year |
---|---|
Emerging role and therapeutic implication of mTOR signalling in intervertebral disc degeneration.
Intervertebral disc degeneration (IDD), an important cause of chronic low back pain (LBP), is considered the pathological basis for various spinal degenerative diseases. A series of factors, including inflammatory response, oxidative stress, autophagy, abnormal mechanical stress, nutritional deficiency, and genetics, lead to reduced extracellular matrix (ECM) synthesis by intervertebral disc (IVD) cells and accelerate IDD progression. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays a vital role in diverse degenerative diseases. Recent studies have shown that mTOR signalling is involved in the regulation of autophagy, oxidative stress, inflammatory responses, ECM homeostasis, cellular senescence, and apoptosis in IVD cells. Accordingly, we reviewed the mechanism of mTOR signalling in the pathogenesis of IDD to provide innovative ideas for future research and IDD treatment. Topics: Animals; Humans; Intervertebral Disc; Intervertebral Disc Degeneration; Mammals; Nucleus Pulposus; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2023 |
5 other study(ies) available for sirolimus and Intervertebral-Disc-Degeneration
Article | Year |
---|---|
Autophagy-activated nucleus pulposus cells deliver exosomal miR-27a to prevent extracellular matrix degradation by targeting MMP-13.
Although autophagy may be beneficial for maintaining the metabolic balance of the extracellular matrix (ECM) in the nucleus pulposus (NP) and its vitality under inflammation, the underlying mechanism still remains unclear. A previous study found that autophagy activation stimulated the release of exosomes in normal chondrocytes, which are located in a similar avascular environment and share many common features with those of nucleus pulposus cells (NPCs). This study explored the protective effect on matrix degradation in the NP by exosomes derived from autophagy-activated NPCs and exosomal microRNAs. NPCs-derived exosomes (NPCs-Exos) were isolated from culture medium of either normal NPCs or rapamycin-treated NPCs and quantified by nanoparticle tracking analysis. The effect of rapamycin-treated NPC-derived exosomes on NPCs were assessed by coculture with interleukin 1β (IL-1β)-stimulated NPCs. After examination of six major proteinases of the ECM, matrix metalloproteinase 13 (MMP-13) was chosen for further study. miR-27a, which targets MMP-13, was investigated through previous studies and bioinformatics tool. The levels of miR-27a were upregulated in both rapamycin-treated NPCs and their exosomes, compared to the control. When exosomal miR-27a was transferred into NPCs, it alleviated IL-1β-induced degradation of the NPC ECM by targeting MMP-13. Autophagy activation may promote the release of NPCs-derived exosomes and thereby prevent the NPC matrix from degradation. Autophagy activation also alleviates intervertebral disc degeneration (IDD), at least partly via exosomal miR-27a, which restrains MMP-13 expression under IL-1β stimulation. Our work elucidates a new mechanism for how autophagy may participate in preventing IDD, which may be a promising therapeutic strategy. Topics: Autophagy; Cells, Cultured; Extracellular Matrix; Humans; Intervertebral Disc Degeneration; Matrix Metalloproteinase 13; MicroRNAs; Nucleus Pulposus; Sirolimus | 2021 |
Reactive Oxygen Species-Scavenging Scaffold with Rapamycin for Treatment of Intervertebral Disk Degeneration.
The chronic inflammatory microenvironment is characterized by the elevated level of reactive oxygen species (ROS). Here, it is hypothesized that developing an ROS-scavenging scaffold loaded with rapamycin (Rapa@Gel) may offer a new strategy for modulating the local inflammatory microenvironment to improve intervertebral disk tissue regeneration. The therapeutic scaffold consisting of ROS-degradable hydrogel can be injected into the injured degeneration site of intervertebral disk (IVD) and can release therapeutics in a programmed manner. The ROS scavenged by scaffold reduces the inflammatory responses. It is found that when rats are treated with Rapa@Gel, this results in an increase in the percentage of M2-like macrophages and a decrease in M1-like macrophages in the inflammatory environment, respectively. Regeneration of IVD is achieved by Rapa@Gel local treatment, due to the increased M2 macrophages and reduced inflammation. This strategy may be extended to the treatment of many other inflammatory diseases. Topics: Animals; Biocompatible Materials; Cytokines; Disease Models, Animal; Drug Delivery Systems; Hydrogels; Intervertebral Disc Degeneration; Male; Mice; Mice, Inbred C57BL; Rats, Sprague-Dawley; RAW 264.7 Cells; Reactive Oxygen Species; Sirolimus | 2020 |
AMP-Activated Protein Kinase Activation in Dorsal Root Ganglion Suppresses mTOR/p70S6K Signaling and Alleviates Painful Radiculopathies in Lumbar Disc Herniation Rat Model.
Animal experiment: a rat model of lumbar disc herniation (LDH) induced painful radiculopathies.. To investigate the role and mechanism of AMP-activated protein kinase (AMPK) in dorsal root ganglia (DRG) neurons in LDH-induced painful radiculopathies.. Overactivation of multiple pain signals in DRG neurons triggered by LDH is crucial to the development of radicular pain. AMPK is recognized as a cellular energy sensor, as well as a pain sensation modulator, but its function in LDH-induced pain hypersensitivity remains largely unknown.. The LDH rat model was established by autologous nucleus pulposus transplantation into the right lumbar 5 (L5) nerve root. At different time points after AMPK agonist metformin (250 mg/kg/d) or mammalian target of rapamycin (mTOR) inhibitor rapamycin (5 mg/kg) intraperitoneal administration, thermal and mechanical sensitivity were evaluated by measuring paw withdrawal latency (PWL) and 50% paw withdrawal thresholds (PWT). The levels of AMPK, mTOR, and p70S6K phosphorylation were determined by Western blot. We also investigated the proportion of p-AMPK positive neurons in the right L5 DRG neurons using immunofluorescence.. LDH evoked persistent thermal hyperalgesia and mechanical allodynia on the ipsilateral paw, as indicated by the decreased PWL and 50% PWT. These pain hypersensitive behaviors were accompanied with significant inhibition of AMPK and activation of mTOR in the associated DRG neurons. Pharmacological activation of AMPK in the DRG neurons not only suppressed mTOR/p70S6K signaling, but also alleviated LDH-induced pain hypersensitive behaviors.. We provide a molecular mechanism for the activation of pain signals based on AMPK-mTOR axis, as well as an intervention strategy by targeting AMPK-mTOR axis in LDH-induced painful radiculopathies.. N/A. Topics: AMP-Activated Protein Kinases; Animals; Disease Models, Animal; Ganglia, Spinal; Hyperalgesia; Intervertebral Disc Degeneration; Intervertebral Disc Displacement; Male; Metformin; Neurons; Nucleus Pulposus; Pain; Phosphorylation; Radiculopathy; Rats; Rats, Wistar; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; Spinal Nerve Roots; TOR Serine-Threonine Kinases | 2019 |
Rapamycin Induced Autophagy Inhibits Inflammation-Mediated Endplate Degeneration by Enhancing Nrf2/Keap1 Signaling of Cartilage Endplate Stem Cells.
Cartilage endplate (CEP) calcification inhibits the transport of metabolites and nutrients in the intervertebral disk and is an important initiating factor of intervertebral disk degeneration. However, the mechanisms governing CEP degeneration have not been thoroughly elucidated. In this study, we established a mouse CEP degeneration model and showed that autophagy insufficiency caused the degeneration of CEP. We found that the inflammatory cytokine tumor necrosis factor-α (TNF-α) increased the level of intracellular reactive oxygen species (ROS) and caused cell senescence and osteogenic differentiation of cartilage endplate stem cells (CESCs), whereas rapamycin-induced autophagy protected CESCs from TNF-α-induced oxidative stress and cell senescence. Furthermore, rapamycin-induced autophagy helped CESCs maintain the chondrogenic properties and inhibited extracellular matrix protease expression and osteogenic differentiation. Further study revealed that autophagy activated by rapamycin or inhibited by chloroquine influenced the expression and nuclear translocation of Nrf2, thereby controlling the expression of antioxidant proteins and the scavenging of ROS. Taken together, the results indicate that rapamycin-induced autophagy enhances Nrf2/Keap1 signaling and promotes the expression of antioxidant proteins, thereby eliminating ROS, alleviating cell senescence, reducing the osteogenic differentiation of CESCs, and ultimately protecting CEPs from chronic inflammation-induced degeneration. Stem Cells 2019;37:828-840. Topics: Animals; Autophagy; Cartilage; Cell Differentiation; Chloroquine; Chondrogenesis; Disease Models, Animal; Female; Gene Expression Regulation; Humans; Intervertebral Disc; Intervertebral Disc Degeneration; Kelch-Like ECH-Associated Protein 1; Matrix Metalloproteinases; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; Osteogenesis; Reactive Oxygen Species; Signal Transduction; Sirolimus; Stem Cells; Tumor Necrosis Factor-alpha | 2019 |
Rapamycin prevents the intervertebral disc degeneration via inhibiting differentiation and senescence of annulus fibrosus cells.
The effects of bleomycin and rapamycin on cellular senescence and differentiation of rabbit annulus fibrosus stem cells (AFSCs) were investigated using a cell culture model. The results showed that bleomycin induced cellular senescence in AFSCs as evidenced by senescence-associated secretory phenotype. The morphology of AFSCs was changed from cobblestone-like cells to pancake-like cells. The senescence-associated β-galactosidase activity, the protein expression of P16 and P21, and inflammatory-related marker gene levels IL-1β, IL-6, and TNF-α were increased in bleomycin-treated AFSCs in a dose-dependent manner. Rapamycin treatment decreased the gene expression of MMP-3, MMP-13, IL-1β, IL-6, TNF-α, and protein levels of P16 and P21 in bleomycin-treated AFSCs. Furthermore, neither bleomycin nor rapamycin changed the ribosomal S6 protein level in AFSCs. However, the phosphorylation of the ribosomal S6 protein was increased in bleomycin-treated AFSCs and decreased in rapamycin-treated AFSCs. AFSCs differentiated into adipocytes, osteocytes, and chondrocytes when they were cultured with respective differentiation media. Rapamycin inhibited multi-differentiation potential of AFSCs in a concentration-dependent manner. Our findings demonstrated that mammalian target of rapamycin (mTOR) signaling affects cellular senescence, catabolic and inflammatory responses, and multi-differentiation potential, suggesting that potential treatment value of rapamycin for disc degenerative diseases, especially lower back pain. Topics: Analysis of Variance; Animals; Annulus Fibrosus; Bleomycin; Blotting, Western; Cellular Senescence; Disease Models, Animal; Gene Expression; Humans; Intervertebral Disc Degeneration; Lumbar Vertebrae; Rabbits; Real-Time Polymerase Chain Reaction; Sirolimus; Stem Cells | 2018 |