sirolimus has been researched along with Esophageal-Neoplasms* in 35 studies
2 review(s) available for sirolimus and Esophageal-Neoplasms
Article | Year |
---|---|
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
Molecular targeted agents for gastric and gastroesophageal junction cancer.
Despite recent improvements in surgical techniques and chemotherapy, advanced cancers of the stomach and gastroesophageal junction (GEJ) continue to have poor clinical outcomes. However, molecules intimately related to cancer cell proliferation, invasion, and metastasis have been studied as candidates for molecular targeted agents. Target molecules, such as the epidermal growth factor receptor, vascular endothelial growth factor receptor, and P13k/Akt/mTor pathway, as well as the insulin-like growth factor receptor, c-Met pathways, fibroblast growth factor receptor, and other pathways are considered to be promising candidates for molecular targeted therapy for gastric and GEJ cancer. In this review we focus on the recent developments in targeting relevant pathways in these types of cancer. Topics: Antibodies, Monoclonal; Antineoplastic Agents; ErbB Receptors; Esophageal Neoplasms; Esophagogastric Junction; Humans; Insulin-Like Growth Factor I; Molecular Targeted Therapy; Proto-Oncogene Proteins c-met; Receptor Protein-Tyrosine Kinases; Sirolimus; Stomach Neoplasms; Vascular Endothelial Growth Factor A | 2012 |
4 trial(s) available for sirolimus and Esophageal-Neoplasms
Article | Year |
---|---|
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
Phase II trial of everolimus in patients with refractory metastatic adenocarcinoma of the esophagus, gastroesophageal junction and stomach: possible role for predictive biomarkers.
Our study was designed to evaluate the efficacy and safety of everolimus in patients with pre-treated metastatic gastric and esophagus cancers in a US-based population focusing on biomarker correlation.. Patients with advanced upper GI adenocarcinomas who progressed after 1-2 prior regimens received everolimus 10 mg PO daily. The primary endpoint was disease control rate (DCR). Secondary endpoints included progression-free survival (PFS), toxicity, overall survival (OS) and biomarker correlatives of the mTOR pathway. Target accrual was 50 patients based on one-sided type I error of 10 % and power of 90 %.. Forty-five patients were evaluable, 21 gastric, 11 esophagus and 13 from the GEJ. The median age was 64 (range 38-73); all patients had an ECOG of 0 or 1; and 18 patients (40 %) had only 1 prior regimen. The most common grade 3-4 adverse events included fatigue (24 %) and thrombocytopenia (22 %). We observed 1 partial response with 39 % of evaluable patients having stable disease. Median OS was 3.4 months (95 % CI 2.7-5.6 months), and PFS was 1.8 months (95 % CI 1.7-2.2 months). There was a strong correlation between ≥2 + IHC staining for p-S6 in tumor samples with better PFS (p < 0.0001) and DCR (p = 0.0001).. Our clinical outcomes were inferior to the Asian studies, which may be explained by disease heterogeneity. However, there was a similar strong correlation between clinical benefit and tumor high pS6. Testing this biomarker in patient samples from the randomized phase III Granite trial may lead to a positive predictive marker. Topics: Adenocarcinoma; Adult; Aged; Antineoplastic Agents; Biomarkers, Tumor; Esophageal Neoplasms; Esophagogastric Junction; Everolimus; Female; Humans; Male; Middle Aged; Neoplasm Metastasis; Sirolimus; Stomach Neoplasms | 2015 |
Phase I study of everolimus and mitomycin C for patients with metastatic esophagogastric adenocarcinoma.
This study aimed at determining the recommended dose of the mammalian target of rapamycin inhibitor everolimus in combination with mitomycin C (MMC) in patients with previously treated metastatic esophagogastric cancer. In this phase I trial, patients received escalated doses of oral everolimus (5, 7.5, and 10 mg/day) in combination with intravenous MMC 5 mg/m² every 3 weeks. Endpoints were the dose-limiting toxicity (DLT), safety, and response rates. Tumor tissues were tested for HER2-status and mutations in the PTEN, PIK3CA, AKT1, CTNNB1, and E-cadherin type 1 genes. Sixteen patients (12 male, four female) with gastric/gastroesophageal junction cancer were included. All patients were previously treated with a platinum-based chemotherapy. Treatment cohorts were: 5 mg/day, three patients; 7.5 mg/day, three patients; and 10 mg/day, 10 patients. No DLTs occurred during dose escalation. Most frequent grade 3 toxicities were leukopenia (18.8%) and neutropenia (18.8%). All other grade 3 toxicities were below 10%. No grade 4 toxicities occurred. Three (18.8%) patients experienced partial responses and four patients had stable disease (SD). Antitumor activity according to Response Evaluation Criteria In Solid Tumors (RECIST)-criteria was highest in the 10 mg/day cohort. No associations between HER2-status or detected mutations and response were observed. The recommended dose of everolimus combined with MMC is 10 mg/day. Encouraging signs of antitumor activity were seen (http://www.ClinicalTrials.gov;. NCT01042782). Topics: Adenocarcinoma; Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Dose-Response Relationship, Drug; Esophageal Neoplasms; Everolimus; Female; Humans; Male; Middle Aged; Mitomycin; Sirolimus; Stomach Neoplasms; Survival Analysis | 2013 |
Phase I clinical and pharmacokinetic study of RAD001 (everolimus) administered daily to Japanese patients with advanced solid tumors.
To determine the pharmacokinetics and safety of RAD001 (everolimus) in Japanese patients with advanced solid tumors.. An open-label, non-randomized, dose-escalation Phase I study of RAD001 administered continuously once daily in a 28-day cycle was performed. The study had a '3 + 3' design, with three patients recruited to each of three successive cohorts treated with RAD001 at 2.5, 5.0 or 10.0 mg/day.. The pharmacokinetics of RAD001 in Japanese patients were similar to those previously determined in Caucasians. The drug safety profile was consistent with that of a mammalian target of rapamycin inhibitor. No dose-limiting toxicities were observed. One patient with esophageal cancer and one with gastric cancer treated with RAD001 at 10 mg/day showed marked tumor responses.. Treatment of Japanese cancer patients with RAD001 may be undertaken with the expectation that previously determined pharmacokinetic and safety profiles apply. The drug may hold promise for treatment of esophageal and gastric cancer. Topics: Aged; Asian People; Colorectal Neoplasms; Dose-Response Relationship, Drug; Drug Administration Schedule; Esophageal Neoplasms; Everolimus; Female; Humans; Immunosuppressive Agents; Liver Neoplasms; Lung Neoplasms; Male; Middle Aged; Neoplasm Staging; Neoplasms; Sirolimus; Stomach Neoplasms; Survival Analysis; Thyroid Neoplasms; Treatment Outcome | 2010 |
30 other study(ies) available for sirolimus and Esophageal-Neoplasms
Article | Year |
---|---|
Harmaline isolated from Peganum harmala suppresses growth of esophageal squamous cell carcinoma through targeting mTOR.
Harmaline is a naturally occurring β-carboline alkaloid that is isolated from Peganum harmala. It has shown efficacy in treating Parkinson's disease and has been reported to exhibit antimicrobial and anticancer properties. However, the molecular mechanism of harmaline in the context of esophageal squamous cell carcinoma (ESCC) has not been characterized. Here, we report that harmaline attenuates ESCC growth by directly targeting the mammalian target of rapamycin (mTOR). Harmaline strongly reduced cell proliferation and anchorage-independent cell growth. Additionally, harmaline treatment induced G2/M phase cell-cycle arrest through upregulation of p27. The results of in vitro and cell-based assays showed that harmaline directly inhibited the activity of mTOR kinase and the phosphorylation of its downstream pathway components. Depletion of mTOR using an shRNA-mediated strategy in ESCC cell lines indicated that reduced mTOR protein expression levels are correlated with decreased cell proliferation. Additionally, we observed that the inhibitory effect of harmaline was dependent upon mTOR expression. Notably, oral administration of harmaline suppressed ESCC patient-derived tumor growth in vivo. Taken together, harmaline is a potential mTOR inhibitor that might be used for therapeutically treating ESCC. Topics: Cell Line, Tumor; Cell Proliferation; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Harmaline; Head and Neck Neoplasms; Humans; Peganum; Sirolimus; TOR Serine-Threonine Kinases | 2021 |
Silencing FAM135B enhances radiosensitivity of esophageal carcinoma cell.
FAM135B (family with sequence similarity 135, member B) is related to the progression of esophageal squamous cell carcinoma (ESCC). However, the role played by the gene in radiosensitivity remains unknown. Herein, we examined the relationship between FAM135B and radiosensitivity. According to the results, FAM135B is highly expressed in ESCC cells, and ESCC cells with high levels of FAM135B are resistant to irradiation. Silencing FAM135B inhibits colony formation capability and cell cycle protein expression (pP53, CDK1), promotes cell cycle arrest at the G2/M phase following irradiation. Moreover, transcriptome sequencing analysis demonstrates that FAM135B regulates downstream PI3K/Akt/mTOR signaling pathway, and western blot verifies the result. One of the mechanisms of increasing radiosensitivity by silencing FAM135B expression in ESCC cells may be achieved by regulating the PI3K/Akt/mTOR signaling pathway. Silencing FAM135B shows synergy with PI3K/Akt/mTOR pathway inhibitor (rapamycin) in increasing radiosensitivity, regulating the expression of cell cycle protein and inducing apoptosis of ESCC cells. The results indicate that FAM135B could be a potential treatment target for ESCC in management of radiosensitivity. Topics: Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Survival; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Silencing; Humans; Intracellular Signaling Peptides and Proteins; Radiation Tolerance; RNA, Small Interfering; Signal Transduction; Sirolimus; Up-Regulation | 2021 |
Chemokine (C-C Motif) Ligand 1 Derived from Tumor-Associated Macrophages Contributes to Esophageal Squamous Cell Carcinoma Progression via CCR8-Mediated Akt/Proline-Rich Akt Substrate of 40 kDa/Mammalian Target of Rapamycin Pathway.
Tumor-associated macrophages (TAMs) promote tumor progression. The number of infiltrating TAMs is associated with poor prognosis in esophageal squamous cell carcinoma (ESCC) patients; however, the mechanism underlying this phenomenon is unclear. cDNA microarray analysis indicates that the expression of chemokine (C-C motif) ligand 1 (CCL1) is up-regulated in peripheral blood monocyte-derived macrophages stimulated using conditioned media from ESCC cells (TAM-like macrophages). Here, we evaluated the role of CCL1 in ESCC progression. CCL1 was overexpressed in TAM-like macrophages, and CCR8, a CCL1 receptor, was expressed on ESCC cell surface. TAM-like macrophages significantly enhanced the motility of ESCC cells, and neutralizing antibodies against CCL1 or CCR8 suppressed this increased motility. Recombinant human CCL1 promoted ESCC cell motility via the Akt/proline-rich Akt substrate of 40 kDa/mammalian target of rapamycin pathway. Phosphatidylinositol 3-kinase or Akt inhibitors, CCR8 silencing, and neutralizing antibody against CCR8 could significantly suppress these effects. The overexpression of CCL1 in stromal cells or CCR8 in ESCC cells was significantly associated with poor overall survival (P = 0.002 or P = 0.009, respectively) and disease-free survival (P = 0.009 or P = 0.047, respectively) in patients with ESCC. These results indicate that the interaction between stromal CCL1 and CCR8 on cancer cells promotes ESCC progression via the Akt/proline-rich Akt substrate of 40 kDa/mammalian target of rapamycin pathway, thereby providing novel therapeutic targets. Topics: Carcinoma, Squamous Cell; Cell Movement; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Humans; Ligands; Macrophages; Proto-Oncogene Proteins c-akt; Receptors, CCR8; Sirolimus; TOR Serine-Threonine Kinases; Tumor-Associated Macrophages | 2021 |
SOX9/miR-203a axis drives PI3K/AKT signaling to promote esophageal cancer progression.
Deregulation of SOX9 in esophageal cancer has been reported. However, the regulatory mechanisms underlying SOX9 during esophageal squamous cell carcinoma (ESCC) progression remain poorly understood. Here, we independently confirmed the increased SOX9 expression in two ESCC cohorts and its correlation with poor prognosis. We demonstrated that SOX9 was required for maintaining self-renewal, motility, and chemoresistance in vitro and that ectopic expression of SOX9 promoted tumorigenicity in vivo. Screening for potential SOX9-regulated miRNAs revealed that target genes of differentially expressed miRNAs were enriched in the PI3K/AKT signaling pathway and identified the downregulated miR-203a as a candidate. Mechanistically, SOX9 activation caused repression of miR-203a transcription by binding to miR-203a promoter, thus preventing the miR-203a-mediated inhibition of multiple PI3K/AKT/mTOR components, including PIK3CA, AKT2, and RPS6KB1. The association between SOX9 expression and PI3K/AKT/mTOR signaling was further validated in clinical samples. Moreover, rapamycin treatment attenuated the SOX9-mediated malignant phenotypes and potentiated cisplatin-mediated inhibition of tumor growth. Together, these findings uncover a novel activation of the PI3K/AKT pathway by the SOX9/miR-203a axis and define a subgroup of patients who may benefit from targeted therapy. Topics: Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cisplatin; Cohort Studies; Disease Progression; Drug Synergism; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Esophagus; Female; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Kaplan-Meier Estimate; Male; MicroRNAs; Middle Aged; Oligonucleotide Array Sequence Analysis; Phosphatidylinositol 3-Kinases; Prognosis; Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; SOX9 Transcription Factor; TOR Serine-Threonine Kinases; Transcription, Genetic; Xenograft Model Antitumor Assays | 2020 |
Comprehensive Analysis of Tumor-Infiltrating Immune Cells and Relevant Therapeutic Strategy in Esophageal Cancer.
A growing body of evidence has indicated that behaviors of cancers are defined by not only intrinsic activities of tumor cells but also tumor-infiltrating immune cells (TIICs) in the tumor microenvironment. However, it still lacks a well-structured and comprehensive analysis of TIICs and its therapeutic value in esophageal cancer (EC). The proportions of 22 TIICs were evaluated between 150 normal tissues and 141 tumor tissues of EC by the CIBERSORT algorithm. Besides, correlation analyses between proportions of TIICs and clinicopathological characters, including age, gender, histologic grade, tumor location, histologic type, LRP1B mutation, TP53 mutation, tumor stage, lymph node stage, and TNM stage, were conducted. We constructed a risk score model to improve prognostic capacity with 5 TIICs by least absolute shrinkage and selection operator (lasso) regression analysis. The risk score = -1.86∗plasma + 2.56∗T cell follicular helper - 1.37∗monocytes - 3.64∗activated dendritic cells - 2.24∗resting mast cells (immune cells in the risk model mean the proportions of immune cell infiltration in EC). Patients in the high-risk group had significantly worse overall survival than these in the low-risk group (HR: 2.146, 95% CI: 1.243-3.705, Topics: Adult; Algorithms; Antineoplastic Agents; Cell Count; Databases, Factual; Dendritic Cells; Esophageal Neoplasms; Female; Gene Expression; Humans; Lymph Nodes; Lymphocytes, Tumor-Infiltrating; Male; Mast Cells; Middle Aged; Monocytes; Neoplasm Staging; Plasma Cells; Prognosis; Receptors, LDL; Regression Analysis; Semustine; Sirolimus; Survival Analysis; T Follicular Helper Cells; Tumor Microenvironment; Tumor Suppressor Protein p53 | 2020 |
OP16, a novel ent-kaurene diterpenoid, potentiates the antitumor effect of rapamycin by inhibiting rapamycin-induced feedback activation of Akt signaling in esophageal squamous cell carcinoma.
Hyperactivation of mTOR signaling pathway has been viewed as a significant molecular pathogenesis of cancer. However, inhibition of mTOR by rapamycin and its analogs could induce numerous negative feedback loops to attenuate their therapeutic efficacy. As a traditional Chinese herbal medicine, Rabdosia rubescens has been used to treat esophageal squamous cell carcinoma (ESCC) for hundreds of years, and its major effective component is oridonin. Here we reported that OP16, a novel analog of oridonin, showed potent inhibition of cell proliferation and Akt phosphorylation in ESCC cells. The combination of OP16 and rapamycin possesses synergistic anti-proliferative and pro-apoptotic effects both in ESCC cells and ESCC xenografts, and no obvious adverse effect was observed in vivo. Mechanistic analysis revealed that OP16 could inhibit rapamycin-induced Akt activation through the p70S6K-mediated negative feedback loops, and the combination of OP16 and rapamycin was more effective in activating caspase-dependent apoptotic signaling cascade. This study supports the combined use of OP16 with rapamycin as a feasible and effective therapeutic approach for future treatment of ESCC. Topics: Animals; Antibiotics, Antineoplastic; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Diterpenes, Kaurane; Drug Synergism; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Feedback, Physiological; Female; Humans; Mice, Nude; Phosphorylation; Protein Processing, Post-Translational; Proto-Oncogene Proteins c-akt; Random Allocation; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; Specific Pathogen-Free Organisms; Tumor Burden; Xenograft Model Antitumor Assays | 2017 |
Sirtuin 6 plays an oncogenic role and induces cell autophagy in esophageal cancer cells.
Sirtuin 6, a member of sirtuin family, is generally regarded as a tumor suppressor as it participates in suppressing hypoxia-inducible factor 1α and MYC transcription activity by deacetylating H3K9 (histone H3 lysine 9) and H3K56 (histone H3 lysine) at promoters of target genes, leading to the aerobic glycolysis inhibition and cell growth suppression. However, its expression has recently been reported to be highly elevated in a series of tumors, including prostate cancer, breast cancer, and non-small cell lung cancer, indicating that sirtuin 6 plays dual roles in tumorigenicity in a cell/tumor type-specific manner. To our knowledge, the biological roles of sirtuin 6 in esophageal cancer cells have still been underestimated. In the study, data from quantitative reverse transcriptase polymerase chain reaction-based assays and immunohistochemical assays revealed that sirtuin 6 was remarkably overexpressed in esophageal squamous tumor tissues. Moreover, its upregulation was closely related with clinical features, such as gender, pathology, tumor-node-metastasis, and cell differentiation. Subsequently, the biological tests showed that it promoted cell proliferation and induced the expression of Bcl2, a key anti-apoptotic factor, in esophageal carcinoma cells. Moreover, using the ratio of LC3II/I, a widely recognized autophagy biomarker, we showed that it apparently induced cell autophagy, which was further confirmed by the autophagy flux assays. In addition, results from western blotting assays and immunoprecipitation assays displayed that sirtuin 6 specifically interacted with ULK1 and positively regulated its activity by inhibiting its upstream factor mammalian target of rapamycin activity. In summary, our studies shed insights into the crucial functions of sirtuin 6 in esophageal carcinoma cells and provide evidence supporting sirtuin 6-based personalized therapies in esophageal carcinoma cell patients. Topics: Apoptosis; Autophagy; Autophagy-Related Protein-1 Homolog; Biomarkers, Tumor; Cell Line, Tumor; Cell Proliferation; Esophageal Neoplasms; Gene Expression Regulation, Neoplastic; Glycolysis; Humans; Intracellular Signaling Peptides and Proteins; Sirolimus; Sirtuins | 2017 |
Wild-type phosphatase and tensin homolog deleted on chromosome 10 improved the sensitivity of cells to rapamycin through regulating phosphorylation of Akt in esophageal squamous cell carcinoma.
Esophageal squamous cell carcinoma (ESCC) is one of the most frequently diagnosed cancers in China, but the etiology and mode of carcinogenesis of this disease remain poorly understood. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), as a negative regulator of Akt/mTOR pathway, frequently mutates or is inactive in many cancers. Although mTOR has been thought a promising cancer therapeutic target, the sensitivity of tumor cells to rapamycin was still to be revaluated. In this study, we measured the effects of rapamycin on cell proliferation and phosphorylation of Akt in ESCC cells with varying degrees of differentiation. And then, the relationship between PTEN status and the sensitivity of cells to rapamycin was investigated in EC9706 cells with or without wild-type PTEN in vitro and in vivo. The results demonstrated ESCC cells with poor differentiation were insensitive to rapamycin of high concentration and rapamycin obviously promoted the phosphorylation of Akt in these cells, but it had no obvious effects on p-Akt in cells with well differentiation. Also, we showed that wild-type PTEN improved the sensitivity of poor differentiation cells to rapamycin through inhibiting phosphorylation of Akt in vitro and in vivo. This study explored the possible molecular mechanism of some ESCC cells insensitive to rapamycin and provided a measure for treating ESCC patients with PTEN inactivation using mTOR inhibitors. Topics: Animals; Antibiotics, Antineoplastic; Carcinoma, Squamous Cell; Cell Differentiation; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Humans; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Pharmacogenetics; Phosphorylation; Proto-Oncogene Proteins c-akt; PTEN Phosphohydrolase; Random Allocation; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2017 |
Downregulation of p70S6K Enhances Cell Sensitivity to Rapamycin in Esophageal Squamous Cell Carcinoma.
It has been demonstrated that mTOR/p70S6K pathway was abnormally activated in many cancers and rapamycin and its analogs can restrain tumor growth through inhibiting this pathway, but some tumors including esophageal squamous cell carcinoma (ESCC) appear to be insensitive to rapamycin in recent studies. In the present study, we explored the measures to improve the sensitivity of ESCC cells to rapamycin and identified the clinical significance of the expression of phosphorylated p70S6K (p-p70S6K). The results showed that, after downregulating the expression of p70S6K and p-p70S6K by p70S6K siRNA, the inhibitory effects of rapamycin on cell proliferation, cell cycle, and tumor growth were significantly enhanced in vitro and in vivo. Furthermore, p-p70S6K had strong positive expression in ESCC tissues and its expression was closely related to lymph node metastasis and the TNM staging. These results indicated that p-p70S6K may participate in the invasion and metastasis in the development of ESCC and downregulation of the expression of p-p70S6K could improve the sensitivity of cells to rapamycin in ESCC. Topics: Animals; Antibiotics, Antineoplastic; Carcinoma, Squamous Cell; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Down-Regulation; Drug Resistance, Neoplasm; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Gene Expression; Humans; Lymphatic Metastasis; Male; Mice; Neoplasm Staging; Phosphorylation; Ribosomal Protein S6 Kinases, 70-kDa; RNA Interference; RNA, Small Interfering; Sirolimus; Xenograft Model Antitumor Assays | 2016 |
Expression, modulation, and clinical correlates of the autophagy protein Beclin-1 in esophageal adenocarcinoma.
Esophageal adenocarcinoma (EAC) is characterized by rapidly increasing incidence and mortality rates and poor survival. Efficacious preventive and treatment options are urgently needed. An increasing number of pharmacologic agents targeting cancer cell death via autophagy mechanisms are being evaluated in hopes of circumventing apoptotic and therapeutic resistance. We report for the first time, loss of Beclin-1, a key mediator of autophagy, was significantly linked to prognostic factors in EAC. Specifically, Beclin-1 expression loss occurred in 49.0% of EAC patients versus 4.8% of controls. There was a significant inverse correlation between loss of Beclin-1 with histologic grade and tumor stage supporting a tumor suppressive role for Beclin-1. Autophagy modulation linked to cell death was examined in EAC cell lines following treatment with a proanthocyanidin-rich cranberry extract, C-PAC, and the commonly used autophagy inducer, rapamycin. C-PAC induced Beclin-1-independent autophagy in EAC cells characterized by reduced phosphorylation at serine 15 and 93, and significant cell death induction. In contrast, rapamycin-induced autophagy resulted in concomitant, increases in total Beclin-1 levels as well as Beclin-1-phosphorylation in a cell line specific manner, leading to long-term cell survival. Furthermore, autophagic LC3-II was induced by C-PAC following siRNA suppression of Beclin-1 in EAC cells. Together these data support a prognostic role of Beclin-1 in EAC with evidence that Beclin-dependent autophagy induction is agent specific. Future studies are necessary to fully interrogate the role autophagy plays in the progression of normal tissue to EAC and how specific agents targeting autophagic mechanisms can be efficaciously applied for cancer prevention or treatment. © 2015 Wiley Periodicals, Inc. Topics: Adenocarcinoma; Anthocyanins; Autophagy; Beclin-1; Cell Line, Tumor; Esophageal Neoplasms; Gene Expression Regulation, Neoplastic; Humans; Neoplasm Grading; Neoplasm Staging; Phosphorylation; Plant Extracts; Prognosis; Sirolimus; Survival Analysis; Vaccinium macrocarpon | 2016 |
The 4E-BP1/eIF4E ratio is a determinant for rapamycin response in esophageal cancer cells.
Rapamycin inhibits products of molecular pathways in esophageal squamous cell carcinoma and limits tumor cell growth by targeting 4E-BP1- and eIF4E-dependent gene translation. In this study, we investigate the influence of 4E-BP1-to-eIF4E ratio on rapamycin response in esophageal squamous cell carcinoma cells, and the underlying mechanism is discussed.. The response to rapamycin treatment was examined in 6 esophageal cancer cell lines. Adjustment of the 4E-BP1/eIF4E ratio was carried out by knockdown or overexpression of 4E-BP1 and eIF4E. The relationship between Egr-1 and 4E-BP1 expression in esophageal cancer cells was also studied.. The 4E-BP1/eIF4E ratio was adjusted to evaluate the response to rapamycin treatment in TE1 and TE2 esophageal cancer cells. TE2 cells are sensitized to rapamycin treatment after overexpression of 4E-BP1 or knockdown of eIF4E; TE1 cells become resistant to rapamycin after knockdown of 4E-BP1 or overexpression of eIF4E. These data suggest that the 4E-BP1/eIF4E ratio is a determinant for the response of TE1 and TE2 cells to rapamycin treatment. Egr-1 expression was higher in TE2 cells compared with other esophageal cancer cell lines, and its knockdown increased 4E-BP1 expression in TE2 cells, which became sensitive to rapamycin treatment.. The 4E-BP1/eIF4E ratio is a determinant of the response of rapamycin treatment in esophageal cancer cells. Egr-1 can reduce 4E-BP1 gene expression and render esophageal squamous cell carcinoma cells resistant to rapamycin with a relatively low 4E-BP1/eIF4E ratio. Thus, the 4E-BP1/eIF4E ratio may represent a therapeutic index for the prediction of clinical outcome of rapamycin treatment in patients with esophageal squamous cell carcinoma. Topics: Adaptor Proteins, Signal Transducing; Antineoplastic Agents; Biomarkers, Tumor; Carcinoma, Squamous Cell; Cell Cycle Proteins; Cell Line, Tumor; Dose-Response Relationship, Drug; Early Growth Response Protein 1; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Eukaryotic Initiation Factor-4F; Gene Expression Regulation, Neoplastic; Humans; Phosphoproteins; RNA Interference; Signal Transduction; Sirolimus; Transfection | 2015 |
What the Human Genome Project hasn't told us: the epigenetics of development of esophageal squamous cell cancer.
Topics: Adaptor Proteins, Signal Transducing; Antineoplastic Agents; Biomarkers, Tumor; Carcinoma, Squamous Cell; Cell Cycle Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Eukaryotic Initiation Factor-4F; Humans; Phosphoproteins; Sirolimus | 2015 |
Phosphorylated p70S6K expression is an independent prognosticator for patients with esophageal squamous cell carcinoma.
Although marked improvements have been made in surgical technique and chemoradiotherapy, the prognosis for patients with esophageal squamous cell carcinoma (ESCC) is still unsatisfactory. The mammalian target of rapamycin (mTOR) and its downstream signaling, p70 ribosomal S6 protein kinase (p70S6K) and eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), seem to play central roles in the regulation of cancer cell proliferation and survival. The significance of mTOR and its downstream targets, p70S6K and 4E-BP1, on the prognosis of ESCC remains uncertain, but this pathway is of particular concern because effective inhibitors are already available.. Immunohistochemistry performed to evaluate the expression of phosphorylated mTOR (p-mTOR), phosphorylated p70S6K (p-p70S6K), phosphorylated 4E-binding protein 1 (p-4E-BP1), and Ki-67 using 105 surgically resected ESCC correlated with treatment outcome. The effect of the mTOR signaling pathway inhibitor everolimus on ESCC cell lines were investigated in vitro by the 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and in vivo by a nude mouse xenograft model.. Univariate analysis showed that p-mTOR overexpression (P = .022), p-p70S6K overexpression (P = .002), and Ki-67 labeling index >50% (P = .045) were associated with inferior overall survival (OS). In a multivariate comparison, p-p70S6K overexpression (P = .001; hazard ratio, 2.247) remained independently associated with worse OS. In cell lines and the xenograft model, everolimus significantly inhibited ESCC growth.. Overexpression of p-p70S6K is associated independently with a poor prognosis among patients with ESCC. The mTOR signaling pathway inhibitor everolimus can inhibit ESCC growth in vitro and in vivo. Our findings suggest that inhibition of mTOR signaling pathway may be a promising novel target for ESCC. Topics: Adult; Aged; Aged, 80 and over; Animals; Carcinoma, Squamous Cell; Cell Line, Tumor; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Everolimus; Female; Humans; Male; Mice; Middle Aged; Phosphorylation; Prognosis; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays | 2015 |
A case of esophageal adenocarcinoma on long-term rapamycin monotherapy.
Cancer in transplant recipients represents a therapeutic challenge even when the patient is already under mTOR inhibitors. A 78-year-old man received a deceased donor kidney transplant in 1993. After 6 months, he developed a multifocal cutaneous and nonvisceral Kaposi's Sarcoma while on cyclosporine immunosuppressant therapy. The patient was converted to sirolimus monotherapy in 2001 with subsequent complete recovery within 2 years. In 2007, the patient was diagnosed with an esophageal adenocarcinoma stage IIA. An esophagectomy was performed without requirement of further treatment. He has continued on sirolimus monotherapy ever since, with no other incidents and no recurrences of either tumor. In this report, we describe an interesting case of a second cancer while on immunosuppressive therapy with anticancer activity. Moreover, the present knowledge of the matter is discussed. Topics: Adenocarcinoma; Aged; Azathioprine; Biomarkers; Cyclosporine; Drug Substitution; Esophageal Neoplasms; Esophagectomy; Humans; Immunocompromised Host; Immunosuppressive Agents; Kidney Transplantation; Male; Neoplasm Proteins; Neoplasms, Second Primary; Phosphorylation; Postoperative Complications; Prednisone; Protein Processing, Post-Translational; Sarcoma, Kaposi; Signal Transduction; Sirolimus; Skin Neoplasms; TOR Serine-Threonine Kinases | 2015 |
Lithium Modulates Autophagy in Esophageal and Colorectal Cancer Cells and Enhances the Efficacy of Therapeutic Agents In Vitro and In Vivo.
Many epithelial cancers, particularly gastrointestinal tract cancers, remain poor prognosis diseases, due to resistance to cytotoxic therapy and local or metastatic recurrence. We have previously shown that apoptosis incompetent esophageal cancer cells induce autophagy in response to chemotherapeutic agents and this can facilitate their recovery. However, known pharmacological inhibitors of autophagy could not enhance cytotoxicity. In this study, we have examined two well known, clinically approved autophagy inducers, rapamycin and lithium, for their effects on chemosensitivity in apoptosis incompetent cancer cells. Both lithium and rapamycin were shown to induce autophagosomes in esophageal and colorectal cancer cells by western blot analysis of LC3 isoforms, morphology and FACS quantitation of Cyto-ID or mCherry-GFP-LC3. Analysis of autophagic flux indicates inefficient autophagosome processing in lithium treated cells, whereas rapamycin treated cells showed efficient flux. Viability and recovery was assessed by clonogenic assays. When combined with the chemotherapeutic agent 5-fluorouracil, rapamycin was protective. In contrast, lithium showed strong enhancement of non-apoptotic cell death. The combination of lithium with 5-fluorouracil or oxaliplatin was then tested in the syngenic mouse (balb/c) colorectal cancer model--CT26. When either chemotherapeutic agent was combined with lithium a significant reduction in tumor volume was achieved. In addition, survival was dramatically increased in the combination group (p < 0.0001), with > 50% of animals achieving long term cure without re-occurrence (> 1 year tumor free). Thus, combination treatment with lithium can substantially improve the efficacy of chemotherapeutic agents in apoptosis deficient cancer cells. Induction of compromised autophagy may contribute to this cytotoxicity. Topics: Animals; Antineoplastic Agents; Autophagy; Cell Line, Tumor; Colorectal Neoplasms; Drug Synergism; Esophageal Neoplasms; Female; Fluorouracil; Genes, Reporter; Humans; Lithium Chloride; Mice; Mice, Inbred BALB C; Microscopy, Confocal; Organoplatinum Compounds; Oxaliplatin; Sirolimus; Transplantation, Heterologous | 2015 |
[Sensitivity of esophageal squamous cell carcinoma cells to rapamycin can be improved by siRNA-interfered expression of p70S6K].
To explore the differences in sensitivity to rapamycin of five esophageal squamous cell carcinoma cell lines with different differentiation and the changes of sensitivity of the cells after siRNA-interfered expression of p70S6K.. Effects of rapamycin on proliferation of ESCC cell lines with different differentiation, EC9706, TE-1, Eca109, KYSE790 and KYSE450 cells, were investigated using cell counting kit 8 (CCK-8) assay, and according to the above results, the EC9706 cells non-sensitive to rapamycin were chosen to be transfected with p70S6K-siRNA. The changes in sensitivity of cells to rapamycin were measured in vitro and in vivo using CCK-8 kit, flow cytometry and tumor formation in nude mice.. CCK-8 results showed that all the five cell line cells were sensitive to low concentration of rapamycin (<100 nmol/L), but TE-1 and EC9706 cells, which were with poor differentiation, showed resistance to high concentration of rapamycin. After EC9706 cells were treated with 50, 100, 200, 500 and 1 000 nmol/L rapamycin and p70S6K-siRNA, the proliferation rates of EC9706 cells were (48.67 ± 1.68)%, (15.45 ± 1.54)%, (14.00 ± 0.91)%, (10.97 ± 0.72)% and (2.70 ± 0.32)%, respectively, and were significantly lower than that of cells treated with 50, 100, 200, 500 and 1 000 nmol/L rapamycin and control siRNA [(74.53 ± 1.71)%, (68.27 ± 1.35)%, (71.74 ± 2.44)%, (76.23 ± 1.02)% and (80.21 ± 2.77)%] (P<0.05 for all). The results of flow cytometry showed that the ratios of cells in G1 phase of the p70S6K-siRNA, rapamycin and p70S6K-siRNA+ rapamycin groups were (53.82 ± 1.78)%, (57.87 ± 4.01)% and (73.73 ± 3.68)%, respectively, significantly higher than that in the control group (46.09 ± 2.31)% (P<0.05 for all). The results of tumor formation test in vivo showed that the inhibitory effect of rapamycin on tumor growth was stronger after the cells were transfected with p70S6K-siRNA, and the inhibition rate was 96.5%.. ESCC cells with different differentiation have different sensitivity to rapamycin, and p70S6K-siRNA can improve the sensitivity of cells to rapamycin in vitro and in vivo. Topics: Animals; Antibiotics, Antineoplastic; Carcinoma, Squamous Cell; Cell Differentiation; Cell Line, Tumor; Cell Proliferation; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Humans; Mice; Mice, Nude; Ribosomal Protein S6 Kinases, 70-kDa; RNA, Small Interfering; Signal Transduction; Sirolimus; Transfection | 2015 |
SOX2 promotes tumor growth of esophageal squamous cell carcinoma through the AKT/mammalian target of rapamycin complex 1 signaling pathway.
The transcription factor SOX2 is essential for the maintenance of embryonic stem cells and normal development of the esophagus. Our previous study revealed that the SOX2 gene is an amplification target of 3q26.3 in esophageal squamous cell carcinoma (ESCC), and that SOX2 promotes ESCC cell proliferation in vitro. In the present study, we aimed to identify the mechanisms by which SOX2 promotes proliferation of ESCC cells. Using a phosphoprotein array, we assayed multiple signaling pathways activated by SOX2 and determined that SOX2 activated the AKT/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. LY294002, an inhibitor of phosphatidylinositol 3-kinase, and rapamycin, an inhibitor of mTORC1, suppressed the ability of SOX2 to enhance proliferation of ESCC cells in vitro. Effects of SOX2 knockdown, including reduced levels of phosphorylated AKT and decreased ESCC cell proliferation, were reversed with constitutive activation of AKT with knockdown of phosphatase and tensin homolog. In mouse xenografts, SOX2 promoted in vivo tumor growth of ESCC, which was dependent on AKT/mTORC1 activation. LY294002 suppressed the ability of SOX2 to enhance tumor growth of ESCC by reducing cell proliferation, but not by enhancing apoptosis. Furthermore, tissue microarray analysis of 61 primary ESCC tumors showed a positive correlation between expression levels of SOX2 and phosphorylated AKT. Our findings suggest that SOX2 promotes in vivo tumor growth of ESCC through activation of the AKT/mTORC1 signaling pathway, which enhances cell proliferation. Topics: Animals; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chromones; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Heterografts; Humans; Male; MAP Kinase Signaling System; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Inbred BALB C; Mice, Nude; Morpholines; Multiprotein Complexes; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; SOXB1 Transcription Factors; TOR Serine-Threonine Kinases | 2013 |
Antiproliferative effect of a novel mTOR inhibitor temsirolimus contributes to the prolonged survival of orthotopic esophageal cancer-bearing mice.
Esophageal squamous cell carcinoma (ESCC) remains one of the most aggressive cancers with poor prognosis regardless of a several reports that indicate a better therapeutic efficacy using some new chemotherapeutic agents. Recent drug development has contributed to an improved specificity to suppress mTOR activity by which many types of malignancies can be explosively progressed. Temsirolimus (CCI-779, TricelTM) is one of recently synthesized analogs of rapamycin and has provided better outcomes for patients with renal cell carcinoma. In this study, we experimentally evaluated an efficacy of targeting mTOR by temsirolimus for ESCC treatment, with an assessment of its survival advantage using an advanced ESCC animal model. First, we confirmed that the expression of phosphorylated mTOR was increased in 46 of 58 clinical ESCC tumor tissues (79.3%) and appeared to get strengthened with tumor progression. All of ESCC cell lines used in this study revealed an increase of mTOR phosphorylation, accompanied with the upregulation of hypoxia inducible factor-I α (HIF-1α), one of the critical effectors regulated by mTOR. Temsirolimus treatment apparently suppressed the activation of mTOR and its downstream effectors, resulting in the reduced ability of ESCC cell proliferation. Finally, the weekly administration of temsirolimus significantly diminished the size of subcutaneous tumors (vehicle, 3261.6 ± 722.0; temsirolimus, 599.2 ± 122.9; p = 0.007) in nude mice and effectively prolonged orthotopic esophageal cancer-bearing mice (median survival periods: control, 31 d; temsirolimus, 43 d; p = 0.0024). These data suggests that targeting mTOR by temsirolimus may become a therapeutic alternative for esophageal cancer, with a contribution to a better outcome. Topics: Animals; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Enzyme Activation; Esophageal Neoplasms; Humans; Mice; Protein Kinase Inhibitors; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Tumor Burden; Xenograft Model Antitumor Assays | 2013 |
Aberrant activation of the mTOR pathway and anti-tumour effect of everolimus on oesophageal squamous cell carcinoma.
The mammalian target of rapamycin (mTOR) protein is important for cellular growth and homeostasis. The presence and prognostic significance of inappropriate mTOR activation have been reported for several cancers. Mammalian target of rapamycin inhibitors, such as everolimus (RAD001), are in development and show promise as anti-cancer drugs; however, the therapeutic effect of everolimus on oesophageal squamous cell carcinoma (OSCC) remains unknown.. Phosphorylation of mTOR (p-mTOR) was evaluated in 167 resected OSCC tumours and 5 OSCC cell lines. The effects of everolimus on the OSCC cell lines TE4 and TE11 in vitro and alone or in combination with cisplatin on tumour growth in vivo were evaluated.. Mammalian target of rapamycin phosphorylation was detected in 116 tumours (69.5%) and all the 5 OSCC cell lines. Everolimus suppressed p-mTOR downstream pathways, inhibited proliferation and invasion, and induced apoptosis in both TE4 and TE11 cells. In a mouse xenograft model established with TE4 and TE11 cells, everolimus alone or in combination with cisplatin inhibited tumour growth.. The mTOR pathway was aberrantly activated in most OSCC tumours. Everolimus had a therapeutic effect both as a single agent and in combination with cisplatin. Everolimus could be a useful anti-cancer drug for patients with OSCC. Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Carcinoma, Squamous Cell; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cisplatin; Esophageal Neoplasms; Everolimus; Humans; Mice; Phosphorylation; Sirolimus; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays | 2012 |
Cap-dependent mRNA translation and the ubiquitin-proteasome system cooperate to promote ERBB2-dependent esophageal cancer phenotype.
Pathological post-transcriptional control of the proteome composition is a central feature of malignancy. Two steps in this pathway, eIF4F-driven cap-dependent mRNA translation and the ubiquitin-proteasome system (UPS), are deregulated in most if not all cancers. We tested a hypothesis that eIF4F is aberrantly activated in human esophageal adenocarcinoma (EAC) and requires elevated rates of protein turnover and proteolysis and thereby activated UPS for its pro-neoplastic function. Here, we show that 80% of tumors and cell lines featuring amplified ERBB2 display an aberrantly activated eIF4F. Direct genetic targeting of the eIF4F in ERBB2-amplified EAC cells with a constitutively active form of the eIF4F repressor 4E-BP1 decreased colony formation and proliferation and triggered apoptosis. In contrast, suppression of m-TOR-kinase activity towards 4E-BP1with rapamycin only modestly inhibited eIF4F-driven cap-dependent translation and EAC malignant phenotype; and promoted feedback activation of other cancer pathways. Our data show that co-treatment with 2 FDA-approved agents, the m-TOR inhibitor rapamycin and the proteasome inhibitor bortezomib, leads to strong synergistic growth-inhibitory effects. Moreover, direct targeting of eIF4F with constitutively active 4E-BP1 is significantly more potent in collaboration with bortezomib than rapamycin. These data support the hypothesis that a finely tuned balance between eIF4F-driven protein synthesis and proteasome-mediated protein degradation is required for the maintenance of ERBB2-mediated EAC malignant phenotype. Altogether, our study supports the development of pharmaceuticals to directly target eIF4F as most efficient strategy; and provides a clear rationale for the clinical evaluation of combination therapy with m-TOR inhibitors and bortezomib for EAC treatment. Topics: Adaptor Proteins, Signal Transducing; Apoptosis; Boronic Acids; Bortezomib; Case-Control Studies; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Drug Synergism; Enzyme Activation; Esophageal Neoplasms; Eukaryotic Initiation Factor-4F; Feedback, Physiological; Gene Expression Regulation, Neoplastic; Gene Silencing; Gene Targeting; Humans; Phenotype; Phosphoproteins; Phosphorylation; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Biosynthesis; Proteolysis; Pyrazines; Receptor, ErbB-2; Repressor Proteins; RNA Caps; RNA, Messenger; RNA, Small Interfering; Sirolimus; Ubiquitin | 2012 |
Phosphorylated mammalian target of rapamycin expression is associated with the response to chemoradiotherapy in patients with esophageal squamous cell carcinoma.
The mammalian target of rapamycin signaling pathway has been implicated in therapeutic resistance in several types of cancer. However, the significance of mammalian target of rapamycin activation in chemoradiotherapy sensitivity and its effect on the prognosis of esophageal squamous cell carcinoma treated with chemoradiotherapy remain unknown. However, this pathway is of particular interest because an effective inhibitor is available.. By using immunohistochemistry, phosphorylated mammalian target of rapamycin expression was examined in 77 patients with esophageal squamous cell carcinoma treated with preoperative chemoradiotherapy followed by surgery between 1999 and 2009, and correlated with treatment outcome. With the use of CE81T/VGH and TE2 cell lines, cells were treated with chemotherapy, temsirolimus (mammalian target of rapamycin inhibitor), or a combination of chemotherapy and temsirolimus, and investigated by 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.. Pathologic complete response rates were 42% and 16% in patients with negative and positive phosphorylated mammalian target of rapamycin expression, respectively (P = .01). The 3-year overall survivals were 57% and 30% in patients with negative and positive phosphorylated mammalian target of rapamycin expression, respectively (P = .005). Positive phosphorylated mammalian target of rapamycin expression was independently associated with inferior overall and disease-free survival. In patients who did not achieve pathologic complete response, postchemoradiotherapy esophagectomy specimens showed significantly higher phosphorylated mammalian target of rapamycin expression than pretreatment biopsy specimens. In cell lines, concomitant administration of temsirolimus enhanced the effect of chemotherapy.. Phosphorylated mammalian target of rapamycin expression is independently associated with the response to chemoradiotherapy and prognosis of patients with esophageal squamous cell carcinoma treated with preoperative chemoradiotherapy. Mammalian target of rapamycin inhibition can sensitize esophageal cancer cells to chemotherapy. Our results suggest the potential for mammalian target of rapamycin as a therapeutic target for patients with esophageal squamous cell carcinoma who receive multimodality treatment. Topics: Adult; Aged; Biomarkers, Tumor; Biopsy; Carcinoma, Squamous Cell; Cell Line, Tumor; Chemoradiotherapy, Adjuvant; Chi-Square Distribution; Disease-Free Survival; Esophageal Neoplasms; Esophagectomy; Female; Humans; Immunohistochemistry; Kaplan-Meier Estimate; Logistic Models; Male; Middle Aged; Multivariate Analysis; Neoadjuvant Therapy; Odds Ratio; Phosphorylation; Proportional Hazards Models; Protein Kinase Inhibitors; Retrospective Studies; Risk Assessment; Risk Factors; Sirolimus; Time Factors; TOR Serine-Threonine Kinases; Treatment Outcome | 2012 |
Mechanistic target of rapamycin small interfering RNA and rapamycin synergistically inhibit tumour growth in a mouse xenograft model of human oesophageal carcinoma.
To investigate the effect of mechanistic target of rapamycin (mTOR)-specific small interfering RNA (siRNA) and rapamycin on tumour size and levels of hypoxia inducible factor 1α(HIF-1α), vascular endothelial growth factor (VEGF) and mTOR proteins, and mTOR mRNA, in a mouse xenograft model of human oesophageal carcinoma.. Tumours were induced in BALB/c nude mice using the human oesophageal squamous cell carcinoma cell line, EC1, injected subcutaneously. Animals were divided into four treatment groups (n = 5 per group) after 7 days: control (phosphate buffered saline, daily intraperitoneal [i.p.] injection); 50 μg/kg rapamycin, daily i.p. injection; 3 μg/kg mTOR siRNA, daily i.p. injection; combined mTOR siRNA and rapamycin, daily i.p. injections. Tumour volume was measured 21 days after xenograft. Levels of mTOR, VEGF and HIF-1α were assessed via immunohistochemistry and in situ hybridization.. mTOR siRNA and/or rapamycin significantly decreased tumour volume and levels of HIF-1α, VEGF and mTOR protein, and mTOR mRNA. Combination treatment was significantly more effective than either treatment alone.. mTOR siRNA and/or rapamycin inhibited the growth of oesophageal carcinoma in vivo. This may represent a novel and effective treatment strategy for oesophageal carcinoma. Topics: Animals; Antibiotics, Antineoplastic; Carcinoma; Cell Line, Tumor; Esophageal Neoplasms; Female; Gene Expression; Gene Knockdown Techniques; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Mice; Mice, Inbred BALB C; Mice, Nude; RNA, Small Interfering; Sirolimus; TOR Serine-Threonine Kinases; Tumor Burden; Vascular Endothelial Growth Factor A; Xenograft Model Antitumor Assays | 2012 |
The PTEN/PI3K/Akt pathway regulates stem-like cells in primary esophageal carcinoma cells.
Recent reports have shown that cancer stem cells exist in many malignancies. Side population (SP) cells are used to enrich cancer stem-like cells in many cell lines and fresh tumor specimens. In this study, we cultured primary esophageal squamous cell carcinoma (ESCC) cells from ESCC tissue specimens. SP cells from primary ESCC cells were more resistant to chemotherapeutic reagents and formed more colonies in vitro than non-SP cells. In addition, xenograft experiments revealed that SP cells were more tumorigenic in vivo. Further results indicated that the PI3K/Akt pathway is essential to SP cells through the regulation of ABCG2 transporter function. Furthermore, PTEN, rather than mTOR, was found to be involved in SP cell regulation in primary ESCC cells. These findings reveal that SP cells are enriched for cancer stem-like cells in primary ESCC cells and that the PTEN/PI3K/Akt pathway regulates this stem-like population. This study indicates that SP cells in primary culture cells from tissue specimens could be a promising model for cancer stem cell research and may help researchers develop novel therapeutic strategies or efficient drugs that target ESCC stem-like cells. Topics: Antineoplastic Agents; ATP-Binding Cassette Transporters; Carcinoma, Squamous Cell; Cell Proliferation; Chromones; Drug Resistance, Neoplasm; Enzyme Inhibitors; Esophageal Neoplasms; Humans; Morpholines; Neoplastic Stem Cells; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; PTEN Phosphohydrolase; RNA Interference; Side-Population Cells; Signal Transduction; Sirolimus; Tumor Cells, Cultured | 2011 |
mTOR inhibitor rapamycin alone or combined with cisplatin inhibits growth of esophageal squamous cell carcinoma in nude mice.
Accumulating evidences have demonstrated that mTOR pathway has a central role not only in cell growth but also in invasion and metastasis of cancers. Here we reported that rapamycin or cisplatin alone inhibited significantly the tumor growth and their combination had the strongest anticancer effect on transplantable tumor growth of human ESCC cell line EC9706 in nude mice. Furthermore, western blots, RT-PCR and TUNEL assay revealed that rapamycin specifically blocked mTOR pathway and induced apoptosis of ESCC cells in vivo. These findings indicate a rationale for using mTOR inhibitors as a mechanism-based therapeutic approach to patients with ESCC. Topics: Aged; Animals; Antineoplastic Agents; Apoptosis; Blotting, Western; Carcinoma, Squamous Cell; Cell Proliferation; Cisplatin; Esophageal Neoplasms; Female; Humans; Immunohistochemistry; In Situ Nick-End Labeling; Intracellular Signaling Peptides and Proteins; Male; Mice; Mice, Nude; Middle Aged; Neoplasms, Experimental; Protein Serine-Threonine Kinases; Reverse Transcriptase Polymerase Chain Reaction; Sirolimus; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays | 2010 |
RAD001 offers a therapeutic intervention through inhibition of mTOR as a potential strategy for esophageal cancer.
Esophageal cancer is one of the most frequently occurring cancers in the world. Targeting therapy strategy of cancer with specific inhibitors is developing and has showed promising antitumor efficacy. It is known that mTOR is an important controller of cell growth. RAD001 (everolimus) is a specific inhibitor of mTOR that can block the mTOR signaling pathway. The purposes of this study was to explore the inhibitory effects of RAD001 on mTOR signaling and the mechanism of cell growth suppression by RAD001. We examined both the expression of mTOR, p70S6K and S6 in SEG-1 esophageal cancer cells and KOB-13 normal esophageal epithelial cells and the efficacy of RAD001 against SEG-1 esophageal cancer cells. mTOR, p70S6K and S6 were overexpressed in SEG-1 esophageal cancer cells compared with KOB-13 normal esophageal epithelial cells. SEG-1 esophageal cancer cells were sensitive to RAD001. The survival rate of the cells treated with RAD001 over 0.33 microM was significantly different compared with that of control (P<0.01). RAD001 inhibited the phosphorylation of mTOR (Ser2448) and S6 (Ser240/244) in different grades and the expressions of mTOR, p70S6K and S6. As a result, RAD001 induced a dose-dependent decrease in cell proliferation, G1/S arrest and damage of cell shape. Taken together, these data showed that RAD001 can inhibit mTOR signaling and proliferation in SEG-1 esophageal cancer cells in vitro. It offers a therapeutic intervention through inhibition of mTOR as a potential strategy for esophageal cancer. Topics: Antineoplastic Agents; Blotting, Western; Cell Line, Tumor; Cell Proliferation; Cell Separation; Esophageal Neoplasms; Everolimus; Flow Cytometry; Humans; Intracellular Signaling Peptides and Proteins; Phosphorylation; Protein Serine-Threonine Kinases; Ribosomal Protein S6 Kinases; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2010 |
Phosphorylated mTOR expression is associated with poor prognosis for patients with esophageal squamous cell carcinoma.
The mammalian target of rapamycin (mTOR) plays central roles in the regulation of cell growth and proliferation by monitoring nutrient availability, cellular energy level, oxygen level, and mitogenic signals. The aberrant activation of mTOR in relation to clinical outcome has been reported in several types of cancers. mTOR is increasingly important as a potential target for anticancer therapy. Nonetheless, a prognostic feature of mTOR activation in esophageal squamous cell carcinoma (ESCC) remains uncertain.. First, in order to validate phospho-specific mTOR antibody (Ser2448), phosphorylated mTOR (p-mTOR) expression levels in five ESCC cell lines under cultural conditions with or without everolimus (mTOR inhibitor, also known as RAD001) were evaluated by in vitro immunohistochemistry and immunoblotting. Second, we examined p-mTOR expression by immunohistochemistry using 143 resected ESCC specimens. Prognostic significance of p-mTOR expression was examined by Cox regression and Kaplan-Meier analyses.. Among 143 patients, 71 (49.7%) were classified into p-mTOR-positive and 72 (50.3%) were classified into p-mTOR-negative. Compared with p-mTOR-negative patients, p-mTOR-positive patients experienced high overall mortality [hazard ratio (HR) 2.44; 95% confidence interval (CI), 1.24-4.83; P = 0.008], which persisted in multivariate analysis (multivariate HR 2.92; 95% CI, 1.48-5.78; P = 0.002). A similar finding was observed for esophageal cancer-specific mortality. p-mTOR expression was not related with any clinical or pathologic variables including age, sex, tumor location, histological grading, operative procedure, T classification (tumor invasion), or lymph-node metastasis.. p-mTOR overexpression was independently associated with poor prognosis in ESCC, supporting the potential for mTOR as a therapeutic target for ESCC. Topics: Aged; Carcinoma, Squamous Cell; Esophageal Neoplasms; Everolimus; Female; Humans; Immunoblotting; Immunoenzyme Techniques; Immunosuppressive Agents; Lymphatic Metastasis; Male; Middle Aged; Neoplasm Staging; Phosphorylation; Prognosis; Sirolimus; Survival Rate; TOR Serine-Threonine Kinases; Tumor Cells, Cultured | 2010 |
Rapamycin and thalidomide treatment of a patient with refractory metastatic gastroesophageal adenocarcinoma: a case report.
Topics: Adenocarcinoma; Adult; Antineoplastic Combined Chemotherapy Protocols; Esophageal Neoplasms; Esophagogastric Junction; Humans; Male; Phosphorylation; Receptor, ErbB-2; Sirolimus; Stomach Neoplasms; Thalidomide; TOR Serine-Threonine Kinases | 2010 |
Bile acid exposure up-regulates tuberous sclerosis complex 1/mammalian target of rapamycin pathway in Barrett's-associated esophageal adenocarcinoma.
Barrett's esophagus, a columnar metaplasia of the lower esophagus epithelium related to gastroesophageal reflux disease, is the strongest known risk factor for the development of esophageal adenocarcinoma (EAC). Understanding the signal transduction events involved in esophageal epithelium carcinogenesis may provide insights into the origins of EAC and may suggest new therapies. To elucidate the molecular pathways of bile acid-induced tumorigenesis, the newly identified inflammation-associated signaling pathway involving I kappaB kinases beta (IKK beta), tuberous sclerosis complex 1 (TSC1), and mammalian target of rapamycin (mTOR) downstream effector S6 kinase (S6K1) was confirmed to be activated in immortalized Barrett's CPC-A and CPC-C cells and esophageal cancer SEG-1 and BE3 cells. Phosphorylation of TSC1 and S6K1 was induced in response to bile acid stimulation. Treatment of these cells with the mTOR inhibitor rapamycin or the IKK beta inhibitor Bay 11-7082 suppressed bile acid-induced cell proliferation and anchorage-independent growth. We next used an orthotopic rat model to evaluate the role of bile acid in the progression of Barrett's esophagus to EAC. Of interest, we found high expression of phosphorylated IKK beta (pIKK beta) and phosphorylated S6K1 (pS6K1) in tumor tissues and the Barrett's epithelium compared with normal epithelium. Furthermore, immunostaining of clinical EAC tissue specimens revealed that pIKK beta expression was strongly correlated with pS6K1 level. Together, these results show that bile acid can deregulate TSC1/mTOR through IKK beta signaling, which may play a critical role in EAC progression. In addition, Bay 11-7082 and rapamycin may potentially be chemopreventive drugs against Barrett's esophagus-associated EAC. Topics: Adenocarcinoma; Barrett Esophagus; Bile Acids and Salts; Cell Division; Chenodeoxycholic Acid; Esophageal Neoplasms; Gastroesophageal Reflux; Gene Expression Regulation, Neoplastic; Humans; Inflammation; NF-kappa B; Nitriles; Protein Kinases; RNA, Small Interfering; Sirolimus; Sulfones; TOR Serine-Threonine Kinases; Tuberous Sclerosis Complex 1 Protein; Tumor Suppressor Proteins; Ursodeoxycholic Acid | 2008 |
mTOR in squamous cell carcinoma of the oesophagus: a potential target for molecular therapy?
The mammalian target of rapamycin (mTOR), an important regulator of protein translation and cell proliferation, is activated in various malignancies. In a randomised controlled trial of advanced renal cell carcinoma patients, targeted therapy to mTOR by means of rapamycin analogues has been shown to significantly improve survival. An in vitro study has revealed that mTOR is activated in oesophageal squamous cell carcinoma (OSCC) cell lines and that mTOR expression is inhibited by rapamycin. The objectives of this histological study were to determine the proportion of OSCC tissues with activated mTOR (p-mTOR) expression, thereby assessing the percentage of patients with OSCC that would possibly benefit from neoadjuvant rapamycin therapy, and to identify the clinicopathological features of these potentially rapamycin-sensitive tumours.. The expression of p-mTOR (Ser2448) was immunohistochemically assessed in a validated tissue microarray comprising triplicate tissue biopsy cores of 108 formalin-fixed, paraffin-embedded OSCCs. Staining results were correlated with clinicopathological data.. Normal oesophageal epithelium was negative for p-mTOR. Activated mTOR expression was located in the cytoplasm of oesophageal tumour cells. 26 (25%) of 105 assessable OSCCs showed tumour cells with positive staining for activated mTOR. Activated mTOR expression was associated with a lesser degree of differentiation only (p = 0.024). No correlation was detected between p-mTOR and the proliferation marker Ki-67.. Activated mTOR can be detected in one-quarter of OSCCs. Since this subset of patients may potentially benefit from mTOR inhibiting therapy, a phase II clinical trial of neoadjuvant mTOR-inhibiting therapy in patients with OSCC may be considered. Topics: Adult; Aged; Antibiotics, Antineoplastic; Biomarkers, Tumor; Carcinoma, Squamous Cell; Esophageal Neoplasms; Female; Humans; Immunoenzyme Techniques; Lymphatic Metastasis; Male; Middle Aged; Neoplasm Proteins; Neoplasm Staging; Protein Kinases; Sirolimus; TOR Serine-Threonine Kinases | 2008 |
An activated mTOR/p70S6K signaling pathway in esophageal squamous cell carcinoma cell lines and inhibition of the pathway by rapamycin and siRNA against mTOR.
mTOR/p70S6K pathway is considered a central regulator in various malignant tumors, but its roles in esophageal squamous cell carcinoma (ESCC), which is a common cause of mortality in China, remain unknown. Here, we identify that the mTOR/p70S6K pathway is activated in ESCC; rapamycin and siRNA against mTOR rapidly inhibited expression of mTOR and the phosphorylation of its major downstream effectors, p70S6K and 4E-BP1, arrested cells in the G(0)/G(1) phase and induced apoptosis of ESCC cells. The findings may lay a foundation for making further investigations on the mTOR/p70S6K pathway as a potential target for ESCC therapy. Topics: Antibiotics, Antineoplastic; Carcinoma, Squamous Cell; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Esophageal Neoplasms; Humans; Protein Kinase Inhibitors; Protein Kinases; Ribosomal Protein S6 Kinases, 70-kDa; RNA, Small Interfering; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Transfection; Up-Regulation | 2007 |