sirolimus has been researched along with Cognitive-Dysfunction* in 16 studies
2 review(s) available for sirolimus and Cognitive-Dysfunction
Article | Year |
---|---|
Rapamycin Responds to Alzheimer's Disease: A Potential Translational Therapy.
Alzheimer's disease (AD) is a sporadic or familial neurodegenerative disease of insidious onset with progressive cognitive decline. Although numerous studies have been conducted or are underway on AD, there are still no effective drugs to reverse the pathological features and clinical manifestations of AD. Rapamycin is a macrolide antibiotic produced by Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Cognitive Dysfunction; Mice; Neurodegenerative Diseases; Sirolimus; tau Proteins | 2023 |
APOE genotype-dependent pharmacogenetic responses to rapamycin for preventing Alzheimer's disease.
The ε4 allele of Apolipoprotein (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD), the most common form of dementia. Cognitively normal APOE4 carriers have developed amyloid beta (Aβ) plaques and cerebrovascular, metabolic and structural deficits decades before showing the cognitive impairment. Interventions that can inhibit Aβ retention and restore the brain functions to normal would be critical to prevent AD for the asymptomatic APOE4 carriers. A major goal of the study was to identify the potential usefulness of rapamycin (Rapa), a pharmacological intervention for extending longevity, for preventing AD in the mice that express human APOE4 gene and overexpress Aβ (the E4FAD mice). Another goal of the study was to identify the potential pharmacogenetic differences in response to rapamycin between the E4FAD and E3FAD mice, the mice with human APOE ε3 allele. We used multi-modal MRI to measure in vivo cerebral blood flow (CBF), neurotransmitter levels, white matter integrity, water content, cerebrovascular reactivity (CVR) and somatosensory response; used behavioral assessments to determine cognitive function; used biochemistry assays to determine Aβ retention and blood-brain barrier (BBB) functions; and used metabolomics to identify brain metabolic changes. We found that in the E4FAD mice, rapamycin normalized bodyweight, restored CBF (especially in female), BBB activity for Aβ transport, neurotransmitter levels, neuronal integrity and free fatty acid level, and reduced Aβ retention, which were not observe in the E3FAD-Rapa mice. In contrast, E3FAD-Rapa mice had lower CVR responses, lower anxiety and reduced glycolysis in the brain, which were not seen in the E4FAD-Rapa mice. Further, rapamycin appeared to normalize lipid-associated metabolism in the E4FAD mice, while slowed overall glucose-associated metabolism in the E3FAD mice. Finally, rapamycin enhanced overall water content, water diffusion in white matter, and spatial memory in both E3FAD and E4FAD mice, but did not impact the somatosensory responses under hindpaw stimulation. Our findings indicated that rapamycin was able to restore brain functions and reduce AD risk for young, asymptomatic E4FAD mice, and there were pharmacogenetic differences between the E3FAD and E4FAD mice. As the multi-modal MRI methods used in the study are readily to be used in humans and rapamycin is FDA-approved, our results may pave a way for future clinical testing of the pharmacogenetic response Topics: Alzheimer Disease; Animals; Apolipoprotein E4; Apolipoproteins E; Blood-Brain Barrier; Cognition; Cognitive Dysfunction; Disease Models, Animal; Genotype; Mice; Mice, Transgenic; Pharmacogenetics; Plaque, Amyloid; Sirolimus | 2020 |
14 other study(ies) available for sirolimus and Cognitive-Dysfunction
Article | Year |
---|---|
Magnolol improves Alzheimer's disease-like pathologies and cognitive decline by promoting autophagy through activation of the AMPK/mTOR/ULK1 pathway.
Alzheimer's disease (AD) is the most common neurodegenerative disease. Amyloid-β (Aβ) plaque deposition and apoptosis are main pathological features of AD. Autophagy plays an important role in clearing abnormal protein accumulation and inhibiting apoptosis; however, autophagy defects often occur from the early stages of AD. The serine/threonine AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/unc-51-like kinase 1/2 (ULK1/2) pathway serves as an energy sensor and is involved in autophagy activation. Furthermore, magnolol is an autophagy regulator, and has potential for AD therapy. We propose that magnolol can ameliorate AD pathologies and inhibit apoptosis by regulating autophagy through the AMPK/mTOR/ULK1 pathway. We examined cognitive function and AD-related pathologies in AD transgenic mice and the protective mechanism of magnolol by western blotting, flow cytometry, and a tandem mRFP-GFP-LC3 adenovirus assay in Aβ oligomer (AβO)-induced N2a and BV2 cell models. In our study, magnolol decreased amyloid pathology and ameliorated cognitive impairment in APP/PS1 mice. Moreover, magnolol inhibited apoptosis by downregulating cleaved-caspase-9 and Bax and upregulating Bcl-2 in APP/PS1 mice and AβO-induced cell models. Magnolol promoted autophagy by degrading p62/SQSTM1, and upregulating LC3II and Beclin-1 expression. Magnolol activated the AMPK/mTOR/ULK1 pathway by increasing phosphorylation of AMPK and ULK1 and decreasing mTOR phosphorylation in in vivo and in vitro AD models. AMPK inhibitor weakened the effects of magnolol in promoting autophagy and inhibiting apoptosis, and ULK1 knockdown weakened the effect of magnolol on AβO-induced apoptosis. These results indicate that magnolol inhibits apoptosis and improves AD-related pathologies by promoting autophagy through activation of the AMPK/mTOR/ULK1 pathway. Topics: Alzheimer Disease; AMP-Activated Protein Kinases; Animals; Autophagy; Cognitive Dysfunction; Mammals; Mice; Mice, Transgenic; Neurodegenerative Diseases; Protein Serine-Threonine Kinases; Sirolimus; TOR Serine-Threonine Kinases | 2023 |
Can rapamycin slow down memory decline in Alzheimer's disease with seizures?
Topics: Alzheimer Disease; Cognitive Dysfunction; Humans; Memory Disorders; Seizures; Sirolimus | 2022 |
[Rapamycin alleviates cognitive impairment in mice with sepses-associated encephalopathy by promoting autophagy].
Objective To investigate the role of rapamycin in alleviating cognitive dysfunction by promoting autophagy in mice with sepsis-associated encephalopathy (SAE). Methods The model of SAE mice was established by caecal ligation and perforation (CLP). Murine sepsis score (MSS) was used to evaluate the severity of sepsis in SAE mice. And the cognitive function was tested by the contextual fear conditioning test. The expression levels of microtubule-associated protein 1 light chain 3 (LC3) and P62 in the hippocampus of the SAE mice were detected by Western blot analysis. Furthermore, the expression and distribution of LC3 in the hippocampal neurons were observed by immunofluorescence. Results The mortality of CLP-induced mice reached 41.7% with 14 days after the procedure, and significant cognitive dysfunction was detected in the surviving mice. Meanwhile, autophagy in the hippocampal tissue was impaired 14 days after CLP. The cognitive dysfunction of SAE mice was alleviated by promoting autophagy via rapamycin. Conclusion Rapamycin alleviated the cognitive dysfunction of SAE mice by promoting autophagy in the hippocampal neurons. Topics: Animals; Autophagy; Cognitive Dysfunction; Hippocampus; Mice; Mice, Inbred C57BL; Sepsis; Sepsis-Associated Encephalopathy; Sirolimus | 2022 |
Rapamycin Ameliorates Cognitive Impairments and Alzheimer's Disease-Like Pathology with Restoring Mitochondrial Abnormality in the Hippocampus of Streptozotocin-Induced Diabetic Mice.
Alzheimer's disease (AD) and diabetes mellitus (DM) share common pathophysiological findings, in particular, the mammalian target of rapamycin (mTOR) has been strongly implied to link to AD, while it also plays a key role in the insulin signaling pathway. However, the mechanism of how DM and AD is coupled remains elusive. In the present study, we found that streptozotocin (STZ)-induced DM mice significantly increased the levels P-mTOR Ser2448, P-p70S6K Thr389, P-tau Ser356 and Aβ levels (Aβ oligomer/monomer), as well as the levels of Drp1 and p-Drp1 S616 (mitochondrial fission proteins) are increased, whereas no change was found in the expression of Opa1, Mfn1 and Mfn2 (mitochondrial fusion proteins) compared with control mice. Moreover, the expression of 4-HNE and 8-OHdG showed an aberrant increase in the hippocampus of STZ-induced DM mice that is associated with a decreased capacity of spatial memory and a loss of synapses. Rapamycin, an inhibitor of mTOR, rescued the STZ-induced increases in mTOR/p70S6K activities, tau phosphorylation and Aβ levels, as well as mitochondria abnormality and cognitive impairment in mice. These findings imply that rapamycin prevents cognitive impairment and protects hippocampus neurons from AD-like pathology and mitochondrial abnormality, and also that rapamycin treatment could normalize these STZ-induced alterations by decreasing hippocampus mTOR/p70S6K hyperactivity. Topics: Amyloid beta-Peptides; Animals; Cognitive Dysfunction; Diabetes Mellitus, Experimental; Hippocampus; Male; Memory; Mice, Inbred C57BL; Mitochondria; Neuroprotective Agents; Oxidative Stress; Peptide Fragments; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; Streptozocin; Synapses; tau Proteins; TOR Serine-Threonine Kinases | 2021 |
Sirolimus Treatment in Sturge-Weber Syndrome.
Sturge-Weber syndrome is a rare neurovascular disorder associated with capillary malformation, seizures, cognitive impairments, and stroke-like episodes (SLEs), arising from a somatic activating mutation in GNAQ. Studies suggest this mutation may cause hyperactivation of the mammalian target of rapamycin pathway. Sirolimus is an mammalian target of rapamycin inhibitor studied in other vascular anomalies and a potentially promising therapy in Sturge-Weber syndrome.. Ten patients with Sturge-Weber syndrome brain involvement and cognitive impairments were enrolled. Oral sirolimus was taken for six months (maximum dose: 2 mg/day, target trough level: 4-6 ng/mL). Neuropsychological testing, electroencephalography, and port-wine score were performed at baseline and after six months on sirolimus. Neuroquality of life, adverse events, and Sturge-Weber Syndrome Neurological Score (neuroscore) were recorded at each visit.. Sirolimus was generally well tolerated; one subject withdrew early. Adverse events considered related to sirolimus were mostly (15/16) grade 1. A significant increase in processing speed was seen in the overall group (P = 0.031); five of nine patients with available data demonstrated statistically rare improvement in processing speed. Improvements were seen in the neuroquality of life subscales measuring anger (P = 0.011), cognitive function (P = 0.015), and depression (P = 0.046). Three subjects experiencing SLEs before and during the study reported shortened recovery times while on sirolimus.. Sirolimus was well tolerated in individuals with Sturge-Weber syndrome and may be beneficial for cognitive impairments, especially in patients with impaired processing speed or a history of SLE. A future, randomized, placebo-controlled trial of sirolimus in patients with Sturge-Weber syndrome is needed to further understand these potentially beneficial effects. Topics: Adolescent; Adult; Child; Child, Preschool; Cognitive Dysfunction; Electroencephalography; Female; Humans; Male; Protein Kinase Inhibitors; Sirolimus; Sturge-Weber Syndrome; Young Adult | 2021 |
Rapamycin alleviates cognitive impairment in murine vascular dementia: The enhancement of mitophagy by PI3K/AKT/mTOR axis.
There are no approved symptomatic treatments for vascular dementia (VaD). Rapamycin (RAPA) improves cognitive deficits in Alzheimer's disease rats. To explore whether RAPA improves cognitive impairment after VaD and its possible molecular mechanisms. Thirty Sprague Dawley rats were randomly divided into three groups: sham (received sham-operation), VaD model (received permanent ligation of bilateral carotid arteries) and RAPA (7.5 mg/kg) treatment. Cognitive function was evaluated by Morris water maze test. Neuronal apoptosis was evaluated by TUNEL staining. Mitophagy was assessed by mitochondrial DNA (mtDNA), ATP level, transmission electron microscope and mitophagy-associated proteins. Proteins were quantified by Western blot and immunofluorescence. BV2 cells were exposed to RAPA or/and MHY1485 (mTOR activator) to verify in vivo results. Compared to VaD rats, the escape latency of RAPA-treated rats was significantly decreased, and time spent in target quadrant was longer. Pathologic changes, mitochondrial dysfunction, increase of neuronal apoptosis and related proteins in VaD rats were remarkably alleviated by RAPA. After RAPA treatment, an increase in number of autophagosomes was observed, along with up-regulation of mitophagy-related proteins. Overexpression of PI3K, AKT and mTOR were suppressed by RAPA treatment. In vitro experiments confirmed effects of RAPA, and demonstrated that MHY1485 addition reversed the RAPA-caused apoptosis inhibition and mitophagy enhancement. Overall, RAPA improved the cognitive impairment of VaD rats, alleviated neuronal injury and mitochondrial dysfunction. We proposed a potential mechanism that RAPA may play improving role by inhibiting neuronal apoptosis and enhancing mitophagy through PI3K/AKT/mTOR pathway. Findings provided an exciting possibility for novel treatment strategy of VaD. Topics: Animals; Apoptosis; Cell Line; Cognition; Cognitive Dysfunction; Dementia, Vascular; Male; Mice; Mitochondria; Mitophagy; Neurons; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats, Sprague-Dawley; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2021 |
mTOR Attenuation with Rapamycin Reverses Neurovascular Uncoupling and Memory Deficits in Mice Modeling Alzheimer's Disease.
Topics: Aged; Aged, 80 and over; Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Cerebrovascular Disorders; Cognitive Dysfunction; Fear; Female; Humans; Male; Memory Disorders; Mice; Mice, Transgenic; Microvessels; Neurovascular Coupling; Nitric Oxide Synthase Type III; Sirolimus; TOR Serine-Threonine Kinases | 2021 |
Iron Overload Impairs Autophagy: Effects of Rapamycin in Ameliorating Iron-Related Memory Deficits.
Over the years, iron accumulation in specific brain regions has been observed in normal aging and related to the pathogenesis of neurodegenerative disorders. Many neurodegenerative diseases may involve cognitive dysfunction, and we have previously shown that neonatal iron overload induces permanent cognitive deficits in adult rats and exacerbates age-associated memory decline. Autophagy is a catabolic pathway involved in the removal of toxic protein aggregates, which are a hallmark of neurodegenerative events. In the present study, we investigated whether iron accumulation would interfere with autophagy and also sought to determine the effects of rapamycin-induced stimulation of autophagy in attenuating iron-related cognitive deficits. Male Wistar rats received a single daily oral dose of vehicle or iron carbonyl (30 mg/kg) at postnatal days 12-14. In adulthood, they received daily intraperitoneal injections of vehicle or rapamycin (0.25 mg/kg) for 14 days. Results showed that iron given in the neonatal period impaired inhibitory avoidance memory and induced a decrease in proteins critically involved in the autophagy pathway, Beclin-1 and LC3, in the hippocampus. Rapamycin in the adulthood reversed iron-induced memory deficits, decreased the ratio phospho-mTOR/total mTOR, and recovered LC3 II levels in iron-treated rats. Our results suggest that iron accumulation, as observed in neurodegenerative disorders, hinders autophagy, which might play a role in iron-induced neurotoxicity. Rapamycin, by inducing authophagy, was able to ameliorate iron-induced cognitive impairments. These findings support the use of rapamycin as a potential neuroprotective treatment against the cognitive decline associated to neurodegenerative disorders. Topics: Animals; Autophagy; Cognitive Dysfunction; Disease Models, Animal; Female; Hippocampus; Iron; Iron Overload; Memory Disorders; Neurodegenerative Diseases; Rats, Wistar; Sirolimus | 2020 |
Rapamycin improves sevoflurane‑induced cognitive dysfunction in aged rats by mediating autophagy through the TLR4/MyD88/NF‑κB signaling pathway.
The present study was aimed to observe the protective effect of rapamycin on cognitive dysfunction induced by sevoflurane in aged rats and its effect on autophagy‑related proteins, and to investigate the regulatory mechanism of the Toll‑like receptor 4/myeloid differentiation primary response 88/nuclear factor‑κB (TLR4/MyD88/NF‑κB) signaling pathway. Fifty Sprague‑Dawley rats were randomly assigned to a control group, a sevoflurane group, a rapamycin pretreatment group, a TLR4 inhibitor group and a 3MA autophagy inhibitor group. A water maze test was used to evaluate the cognition and memory of rats. Hematoxylin and eosin (H&E) staining was performed to observe pathological changes of brain tissue. A TUNEL assay was used to detect the apoptosis of brain tissue. ELISA was used to assess changes in brain injury markers and inflammatory factors. A western blot assay or quantitative reverse transcription PCR (RT‑qPCR) were performed to determine the expression of autophagy‑related proteins and the TLR4/MyD88/NF‑κB signaling pathway in brain tissue. The results revealed that rapamycin could improve cognitive dysfunction of aged rats induced by sevoflurane. Rapamycin was identified to play a therapeutic role, including mitigating brain tissue damage, inhibiting apoptosis, and activating autophagy in a sevoflurane‑treated aged rat model. This function of rapamycin was demonstrated to depend on the TLR4/MyD88/NF‑κB signaling pathway. Topics: Aging; Animals; Autophagic Cell Death; Cognitive Dysfunction; Male; Myeloid Differentiation Factor 88; NF-kappa B; Rats; Rats, Sprague-Dawley; Sevoflurane; Signal Transduction; Sirolimus; Toll-Like Receptor 4 | 2019 |
Mitochondrial dysfunction is associated with long-term cognitive impairment in an animal sepsis model.
Topics: Animals; Autophagy; Brain; Cognitive Dysfunction; Disease Models, Animal; Male; Mitochondria; Mitochondrial Dynamics; Rats, Wistar; Rilmenidine; Rosiglitazone; Sepsis; Sirolimus; Survival Analysis; Up-Regulation | 2019 |
Ethanol-induced cognitive dysfunction is associated with alterations in the mammalian target of rapamycin signalling pathway in the hippocampus of male mice.
The aim of the present study is to investigate the effect of acute excessive administration of ethanol on the expression of proteins related to the PI3K/Akt/mTOR signalling pathway in the mouse hippocampus and to reveal the possible molecular mechanism of learning and memory deficits induced by ethanol. A total of 120 8-week-old Kunming mice (half male and half female) were randomly assigned into low-dose, moderate-dose, and high-dose male and female groups with intragastric administration of 12.5, 25 and 50% ethanol, respectively, at the dosage of 0.1 ml/10 g·day for 14 days. The male and female control groups received an equal volume of distilled water. Then, the spatial learning and memory of the mice were evaluated by the Morris water maze task. The expression of p-mTOR, p-Akt, mTOR and Akt proteins was tested by western blotting and immunohistochemical staining methods in the hippocampal formation in each group, and haematoxylin-eosin stain was used to identify morphological changes in the hippocampal region. Our results indicated that 25 and 50% ethanol administration led to cognitive dysfunction and hippocampal pyramidal cell impairment in the female and male mice, with the male mice showing more severe impairment. In the 50% ethanol group, the male mice exhibited low expression levels of p-Akt and p-mTOR, but the female mice had no significant differences compared with the respective control group. Interestingly, the male expression levels of p-Akt and p-mTOR were significantly lower than those of females. Overall, these findings suggested that the cognitive deficits induced by ethanol are more serious in male mice than in female mice, and the PI3K/Akt/mTOR signalling pathway in the hippocampus might be involved in the impairment process. Topics: Animals; Cognitive Dysfunction; Ethanol; Female; Hippocampus; Male; Memory; Memory Disorders; Phosphatidylinositol 3-Kinases; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2018 |
Rapamycin Protects Sepsis-Induced Cognitive Impairment in Mouse Hippocampus by Enhancing Autophagy.
The purpose of this study is to test the hypothesis that the mammalian target of rapamycin (mTOR) signaling pathway might mediate neuroprotection in a mouse model of septic encephalopathy and also to identify the role of autophagy. Mice were subjected to cecal ligation and puncture (CLP) or a sham operation, and all 50 mice were randomly assigned to five groups: sham, CLP+ saline, CLP+ rapamycin (1, 5, 10 mg/kg) groups. Two weeks after the operation, Morris water maze was conducted for behavioral test; Nissl staining was used for observing glia infiltration; immunohistochemical staining and biochemical measures in hippocampi were performed to detect mTOR targets and autophagy indicators. Immunochemistry revealed significant loss of neurons and increased glia infiltration in hippocampus after CLP operation. Inhibition of mTOR by rapamycin rescued cognitive deficits caused by sepsis (p < 0.05). Rapamycin did not affect total mTOR targets, while phosphorylated mTOR targets (p-mTOR-Ser2448, p-p70S6k-Thr389, p-AKT-S473) decreased (p < 0.05) and autophagy indicators (LC3-II, Atg5, Atg7) were increased, and P62 was decreased in rapamycin-treated CLP mice compared with the untreated (p < 0.05) in hippocampus. Rapamycin improves learning after sepsis through enhancing autophagy and may be a potentially effective therapeutic agent for the treatment of sepsis-induced cognitive impairment. Topics: Animals; Autophagy; Cognitive Dysfunction; Hippocampus; Male; Mice; Neuroprotective Agents; Sepsis-Associated Encephalopathy; Sirolimus; TOR Serine-Threonine Kinases | 2017 |
Forebrain depletion of Rheb GTPase elicits spatial memory deficits in mice.
Topics: Aging; Alzheimer Disease; Amyloid Precursor Protein Secretases; Animals; Aspartic Acid Endopeptidases; Cognitive Dysfunction; Memory Disorders; Mice, Mutant Strains; Mice, Transgenic; Molecular Targeted Therapy; Monomeric GTP-Binding Proteins; Neuropeptides; Prosencephalon; Ras Homolog Enriched in Brain Protein; Sirolimus; Spatial Memory | 2017 |
Convulsive seizures from experimental focal cortical dysplasia occur independently of cell misplacement.
Focal cortical dysplasia (FCD), a local malformation of cortical development, is the most common cause of pharmacoresistant epilepsy associated with life-long neurocognitive impairments. It remains unclear whether neuronal misplacement is required for seizure activity. Here we show that dyslamination and white matter heterotopia are not necessary for seizure generation in a murine model of type II FCDs. These experimental FCDs generated by increasing mTOR activity in layer 2/3 neurons of the medial prefrontal cortex are associated with tonic-clonic seizures and a normal survival rate. Preventing all FCD-related defects, including neuronal misplacement and dysmorphogenesis, with rapamycin treatments from birth eliminates seizures, but seizures recur after rapamycin withdrawal. In addition, bypassing neuronal misplacement and heterotopia using inducible vectors do not prevent seizure occurrence. Collectively, data obtained using our new experimental FCD-associated epilepsy suggest that life-long treatment to reduce neuronal dysmorphogenesis is required to suppress seizures in individuals with FCD. Topics: Animals; Cell Movement; Cognitive Dysfunction; Disease Models, Animal; Female; Gene Expression Regulation; Genes, Reporter; Green Fluorescent Proteins; Humans; Male; Malformations of Cortical Development; Mice; Neurons; Prefrontal Cortex; Seizures; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; White Matter | 2016 |