sirolimus and Cardiotoxicity

sirolimus has been researched along with Cardiotoxicity* in 2 studies

Other Studies

2 other study(ies) available for sirolimus and Cardiotoxicity

ArticleYear
Using cultured canine cardiac slices to model the autophagic flux with doxorubicin.
    PloS one, 2023, Volume: 18, Issue:3

    Chemotherapy-induced impairment of autophagy is implicated in cardiac toxicity induced by anti-cancer drugs. Imperfect translation from rodent models and lack of in vitro models of toxicity has limited investigation of autophagic flux dysregulation, preventing design of novel cardioprotective strategies based on autophagy control. Development of an adult heart tissue culture technique from a translational model will improve investigation of cardiac toxicity. We aimed to optimize a canine cardiac slice culture system for exploration of cancer therapy impact on intact cardiac tissue, creating a translatable model that maintains autophagy in culture and is amenable to autophagy modulation. Canine cardiac tissue slices (350 μm) were generated from left ventricular free wall collected from euthanized client-owned dogs (n = 7) free of cardiovascular disease at the Foster Hospital for Small Animals at Tufts University. Cell viability and apoptosis were quantified with MTT assay and TUNEL staining. Cardiac slices were challenged with doxorubicin and an autophagy activator (rapamycin) or inhibitor (chloroquine). Autophagic flux components (LC3, p62) were quantified by western blot. Cardiac slices retained high cell viability for >7 days in culture and basal levels of autophagic markers remained unchanged. Doxorubicin treatment resulted in perturbation of the autophagic flux and cell death, while rapamycin co-treatment restored normal autophagic flux and maintained cell survival. We developed an adult canine cardiac slice culture system appropriate for studying the effects of autophagic flux that may be applicable to drug toxicity evaluations.

    Topics: Animals; Autophagy; Cardiotoxicity; Dogs; Doxorubicin; Myocytes, Cardiac; Sirolimus

2023
Investigation of drugs for the prevention of doxorubicin-induced cardiac events using big data analysis.
    European journal of pharmacology, 2022, Aug-05, Volume: 928

    Doxorubicin, an anthracycline anti-tumour agent, is an essential chemotherapeutic drug; however, the adverse events associated with doxorubicin usage, including cardiotoxicity, prevent patients from continuing treatment. Here, we used databases to explore existing approved drugs with potential preventative effects against doxorubicin-induced cardiac events and examined their efficacy and mechanisms.. The Gene Expression Omnibus (GEO), Library of Integrated Network-based Cellular Signatures (LINCS), and Food and Drug Administration Adverse Events Reporting System (FAERS) databases were used to extract candidate prophylactic drugs. Mouse models of doxorubicin-induced cardiac events were generated by intraperitoneal administration of 20 mg/kg of doxorubicin on Day 1 and oral administration of prophylactic candidate drugs for 6 consecutive days beginning the day before doxorubicin administration. On Day 6, mouse hearts were extracted and examined for mRNA expression of apoptosis-related genes.. GEO analysis showed that doxorubicin administration upregulated 490 genes and downregulated 862 genes, and LINCS data identified sirolimus, verapamil, minoxidil, prednisolone, guanabenz, and mosapride as drugs capable of counteracting these genetic alterations. Examination of the effects of these drugs on cardiac toxicity using FAERS identified sirolimus and mosapride as new prophylactic drug candidates. In model mice, mosapride and sirolimus suppressed the Bax/Bcl-2 mRNA ratio, which is elevated in doxorubicin-induced cardiotoxicity. These drugs also suppressed the expression of inflammatory cytokines Il1b and Il6 and markers associated with myocardial fibrosis, including Lgal3 and Timp1.. These findings suggest that doxorubicin-induced cardiac events are suppressed by the administration of mosapride and sirolimus.

    Topics: Animals; Apoptosis; Cardiotoxicity; Data Analysis; Doxorubicin; Mice; Myocytes, Cardiac; Pharmaceutical Preparations; RNA, Messenger; Sirolimus

2022