siponimod and Disease-Models--Animal

siponimod has been researched along with Disease-Models--Animal* in 9 studies

Reviews

1 review(s) available for siponimod and Disease-Models--Animal

ArticleYear
Does Siponimod Exert Direct Effects in the Central Nervous System?
    Cells, 2020, 07-24, Volume: 9, Issue:8

    The modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes in lymph nodes. Different sphingosine 1-phosphate receptor subtypes are expressed in the brain and spinal cord, and their pharmacological effects may improve disease development and neuropathology. Siponimod (BAF312) is a novel sphingosine 1-phosphate receptor modulator that has recently been approved for the treatment of active secondary progressive multiple sclerosis (MS). In this review article, we summarize recent evidence suggesting that the active role of siponimod in patients with progressive MS may be due to direct interaction with central nervous system cells. Additionally, we tried to summarize our current understanding of the function of siponimod and discuss the effects observed in the case of MS.

    Topics: Animals; Azetidines; Benzyl Compounds; Central Nervous System; Disease Models, Animal; Humans; Mice; Multiple Sclerosis; Sphingosine 1 Phosphate Receptor Modulators

2020

Other Studies

8 other study(ies) available for siponimod and Disease-Models--Animal

ArticleYear
S1PR1 signaling attenuates apoptosis of retinal ganglion cells via modulation of cJun/Bim cascade and Bad phosphorylation in a mouse model of glaucoma.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2023, Volume: 37, Issue:1

    Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and apoptotic retinal ganglion cell (RGC) death, and is the leading cause of irreversible blindness worldwide. Among the sphingosine 1-phosphate receptors (S1PRs) family, S1PR1 is a highly expressed subtype in the central nervous system and has gained rapid attention as an important mediator of pathophysiological processes in the brain and the retina. Our recent study showed that mice treated orally with siponimod drug exerted neuroprotection via modulation of neuronal S1PR1 in experimental glaucoma. This study identified the molecular signaling pathway modulated by S1PR1 activation with siponimod treatment in RGCs in glaucomatous injury. We investigated the critical neuroprotective signaling pathway in vivo using mice deleted for S1PR1 in RGCs. Our results showed marked upregulation of the apoptotic pathway was associated with decreased Akt and Erk1/2 activation levels in the retina in glaucoma conditions. Activation of S1PR1 with siponimod treatment significantly increased neuroprotective Akt and Erk1/2 activation and attenuated the apoptotic signaling via suppression of c-Jun/Bim cascade and by increasing Bad phosphorylation. Conversely, deletion of S1PR1 in RGCs significantly increased the apoptotic cells in the ganglion cell layer in glaucoma and diminished the neuroprotective effects of siponimod treatment on Akt/Erk1/2 activation, c-Jun/Bim cascade, and Bad phosphorylation. Our data demonstrated that activation of S1PR1 in RGCs induces crucial neuroprotective signaling that suppresses the proapoptotic c-Jun/Bim cascade and increases antiapoptotic Bad phosphorylation. Our findings suggest that S1PR1 is a potential therapeutic target for neuroprotection of RGCs in glaucoma.

    Topics: Animals; Apoptosis; Disease Models, Animal; Glaucoma; Mice; Neurodegenerative Diseases; Neuroprotective Agents; Phosphorylation; Proto-Oncogene Proteins c-akt; Retinal Ganglion Cells; Signal Transduction; Sphingosine 1 Phosphate Receptor Modulators

2023
Effect of Siponimod on Brain and Spinal Cord Imaging Markers of Neurodegeneration in the Theiler's Murine Encephalomyelitis Virus Model of Demyelination.
    International journal of molecular sciences, 2023, Aug-20, Volume: 24, Issue:16

    Siponimod (Sp) is a Sphingosine 1-phosphate (S1P) receptor modulator, and it suppresses S1P- mediated autoimmune lymphocyte transport and inflammation. Theiler's murine encephalomyelitis virus (TMEV) infection mouse model of multiple sclerosis (MS) exhibits inflammation-driven acute and chronic phases, spinal cord lesions, brain and spinal cord atrophy, and white matter injury. The objective of the study was to investigate whether Sp treatment could attenuate inflammation-induced pathology in the TMEV model by inhibiting microglial activation and preventing the atrophy of central nervous tissue associated with neurodegeneration. Clinical disability score (CDS), body weight (BW), and rotarod retention time measures were used to assess Sp's impact on neurodegeneration and disease progression in 4 study groups of 102 animals, including 44 Sp-treated (SpT), 44 vehicle-treated, 6 saline-injected, and 8 age-matched healthy controls (HC). Next, 58 (22 SpT, 22 vehicle, 6 saline injected, and 8 HC) out of the 102 animals were further evaluated to assess the effect of Sp on brain region-specific and spinal cord volume changes, as well as microglial activation. Sp increased CDS and decreased BW and rotarod retention time in TMEV mice, but did not significantly affect most brain region volumes, except for lateral ventricle volume. Sp suppressed ventricular enlargement, suggesting reduced TMEV-induced inflammation in LV. No significant differences in spine volume changes were observed between Sp- and vehicle-treated animals, but there were differences between HC and TMEV groups, indicating TMEV-induced inflammation contributed to increased spine volume. Spine histology revealed no significant microglial density differences between groups in gray matter, but HC animals had higher type 1 morphology and lower type 2 morphology percentages in gray and white matter regions. This suggests that Sp did not significantly affect microglial density but may have modulated neuroinflammation in the spinal cord. Sp may have some effects on neuroinflammation and ventricular enlargement. However, it did not demonstrate a significant impact on neurodegeneration, spinal volume, or lesion volume in the TMEV mouse model. Further investigation is required to fully understand Sp's effect on microglial activation and its relevance to the pathophysiology of MS. The differences between the current study and previous research using other MS models, such as EAE, highlight the differences in path

    Topics: Animals; Atrophy; Brain; Demyelinating Diseases; Disease Models, Animal; Mice; Neuroinflammatory Diseases; Spinal Cord; Theilovirus

2023
Siponimod Inhibits the Formation of Meningeal Ectopic Lymphoid Tissue in Experimental Autoimmune Encephalomyelitis.
    Neurology(R) neuroimmunology & neuroinflammation, 2022, Volume: 9, Issue:1

    To investigate whether the formation or retention of meningeal ectopic lymphoid tissue (mELT) can be inhibited by the sphingosine 1-phosphate receptor 1,5 modulator siponimod (BAF312) in a murine model of multiple sclerosis (MS).. A murine spontaneous chronic experimental autoimmune encephalomyelitis (EAE) model, featuring meningeal inflammatory infiltrates resembling those in MS, was used. To prevent or treat EAE, siponimod was administered daily starting either before EAE onset or at peak of disease. The extent and cellular composition of mELT, the spinal cord parenchyma, and the spleen was assessed by histology and immunohistochemistry.. Siponimod, when applied before disease onset, ameliorated EAE. This effect was also present, although less prominent, when treatment started at peak of disease. Treatment with siponimod resulted in a strong reduction of the extent of mELT in both treatment paradigms. Both B and T cells were diminished in the meningeal compartment.. Beneficial effects on the disease course correlated with a reduction in mELT, suggesting that inhibition of mELT may be an additional mechanism of action of siponimod in the treatment of EAE. Further studies are needed to establish causality and confirm this observation in MS.

    Topics: Animals; Azetidines; Benzyl Compounds; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Humans; Meninges; Mice; Multiple Sclerosis; Sphingosine 1 Phosphate Receptor Modulators; Tertiary Lymphoid Structures

2022
A Sphingosine-1-Phosphate Receptor Modulator Attenuated Secondary Brain Injury and Improved Neurological Functions of Mice after ICH.
    Oxidative medicine and cellular longevity, 2020, Volume: 2020

    Stroke activates the immune system and induces brain infiltration by immune cells, aggravating brain injury. Poststroke immunomodulation via (S1P-)receptor modulation is beneficial; however, the S1P-modulator in clinical use (FTY-720) is unspecific, and undesirable side effects have been reported. Previously, we tested effects of a novel selective S1P-receptor modulator, Siponimod, on ICH-induced brain injury in acute stage of the disease. In the current study, we investigated whether protective effects of Siponimod, evaluated in a short-term study, will protect the brain of ICH animals at long term as well.. 134 C57BL/6N mice were divided into sham and ICH-operated groups. Collagenase model of ICH was employed. ICH animals were divided into Siponimod treated and nontreated. Dose- and time-dependent effects of Siponimod were investigated. Contraplay between development of brain injury and the number of lymphocytes infiltrating the brain was investigated by forelimb placing, T-Maze test, brain water content calculation, MRI scanning, and immunostaining.. Depending on the therapeutic strategy, Siponimod attenuated the development of brain edema, decreased ICH-induced ventriculomegaly and improved neurological functions of animals after ICH. It was associated with less lymphocytes in the brain of ICH animals.. Siponimod is able to decrease the brain injury and improves neurological functions of animals after ICH.

    Topics: Animals; Azetidines; Benzyl Compounds; Brain Edema; Brain Injuries; CD3 Complex; Cell Count; Cerebral Hemorrhage; Cognition; Disease Models, Animal; Mice, Inbred C57BL; Recovery of Function; Sphingosine-1-Phosphate Receptors

2020
Siponimod (BAF-312) Attenuates Perihemorrhagic Edema And Improves Survival in Experimental Intracerebral Hemorrhage.
    Stroke, 2019, Volume: 50, Issue:11

    Background and Purpose- Perihemorrhagic edema (PHE) is associated with poor outcome after intracerebral hemorrhage (ICH). Infiltration of immune cells is considered a major contributor of PHE. Recent studies suggest that immunomodulation via S1PR (sphingosine-1-phosphate receptor) modulators improve outcome in ICH. Siponimod, a selective modulator of sphingosine 1-phosphate receptors type 1 and type 5, demonstrated an excellent safety profile in a large study of patients with multiple sclerosis. Here, we investigated the impact of siponimod treatment on perihemorrhagic edema, neurological deficits, and survival in a mouse model of ICH. Methods- ICH was induced by intracranial injection of 0.075 U of bacterial collagenase in 123 mice. Mice were randomly assigned to different treatment groups: vehicle, siponimod given as a single dosage 30 minutes after the operation or given 3× for 3 consecutive days starting 30 minutes after operation. The primary outcome of our study was evolution of PHE measured by magnetic resonance-imaging on T2-maps 72 hours after ICH, secondary outcomes included evolution of PHE 24 hours after ICH, survival and neurological deficits, as well as effects on circulating blood cells and body weight. Results- Siponimod significantly reduced PHE measured by magnetic resonance imaging (

    Topics: Animals; Azetidines; Benzyl Compounds; Brain Edema; Cerebral Hemorrhage; Disease Models, Animal; Male; Mice; Signal Transduction; Sphingosine-1-Phosphate Receptors

2019
Siponimod (BAF312) Treatment Reduces Brain Infiltration but Not Lesion Volume in Middle-Aged Mice in Experimental Stroke.
    Stroke, 2019, Volume: 50, Issue:5

    Background and Purpose- The contribution of neuroinflammation and, in particular, the infiltration of the brain by lymphocytes is increasingly recognized as a substantial pathophysiological mechanism after stroke. The interaction of lymphocytes with endothelial cells and platelets, termed thromboinflammation, fosters microvascular dysfunction and secondary infarct growth. Siponimod is an S1PR (sphingosine-1-phosphate receptor) modulator, which blocks the egress of lymphocytes from lymphoid organs and has demonstrated beneficial effects in multiple sclerosis treatment. We investigated the effect of treatment with siponimod on stroke outcome in a mouse model of cerebral ischemia. Methods- Transient middle cerebral artery occlusion was induced in middle-aged wild-type mice. Animals were either treated with siponimod (3 mg/kg; intraperitoneal) or vehicle for 6 days. Stroke outcome was assessed by magnetic resonance imaging (spleen volume: prestroke, day 3, and day 7; infarct volume: days 1, 3, and 7) and behavioral tests (prestroke, day 2, and day 6). Immune cells of the peripheral blood and brain-infiltrating cells ipsilateral and contralateral were analyzed by VETScan and by flow cytometry. Results- Siponimod significantly induced lymphopenia on day 7 after transient middle cerebral artery occlusion and reduced T-lymphocyte accumulation in the central nervous system. No effect was detected for lesion size. Conclusions- For siponimod administered at 3 mg/kg in transient middle cerebral artery occlusion mouse model, our findings do not provide preclinical evidence for the use of S1PR1/5 modulators as neuroprotectant in stroke therapy.

    Topics: Age Factors; Animals; Azetidines; Benzyl Compounds; Brain; Brain Ischemia; Disease Models, Animal; Male; Mice; Mice, Inbred C57BL; Sphingosine 1 Phosphate Receptor Modulators; Stroke; T-Lymphocytes; Treatment Outcome

2019
The Xenopus tadpole: An in vivo model to screen drugs favoring remyelination.
    Multiple sclerosis (Houndmills, Basingstoke, England), 2018, Volume: 24, Issue:11

    In multiple sclerosis, development of screening tools for remyelination-promoting molecules is timely.. A Xenopus transgenic line allowing conditional ablation of myelinating oligodendrocytes has been adapted for in vivo screening of remyelination-favoring molecules.. In this transgenic, the green fluorescent protein reporter is fused to E. coli nitroreductase and expressed specifically in myelinating oligodendrocytes. Nitroreductase converts the innocuous pro-drug metronidazole to a cytotoxin. Spontaneous remyelination occurs after metronidazole-induced demyelinating responses. As tadpoles are transparent, these events can be monitored in vivo and quantified. At the end of metronidazole-induced demyelination, tadpoles were screened in water containing the compounds tested. After 72 h, remyelination was assayed by counting numbers of oligodendrocytes per optic nerve.. Among a battery of molecules tested, siponimod, a dual agonist of sphingosine-1-phosphate receptor 1 and 5, was among the most efficient favoring remyelination. Crispr/cas9 gene editing showed that the promyelinating effect of siponimod involves the sphingosine-1-phosphate receptor 5.. This Xenopus transgenic line constitutes a simple in vivo screening platform for myelin repair therapeutics. We validated several known promyelinating compounds and demonstrated that the strong remyelinating efficacy of siponimod implicates the sphingosine-1-phosphate receptor 5.

    Topics: Animals; Animals, Genetically Modified; Azetidines; Benzyl Compounds; Disease Models, Animal; Female; Larva; Male; Receptors, Lysosphingolipid; Remyelination; Xenopus

2018
Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis.
    Journal of neuroinflammation, 2016, 08-26, Volume: 13, Issue:1

    Data from multiple sclerosis (MS) and the MS rodent model, experimental autoimmune encephalomyelitis (EAE), highlighted an inflammation-dependent synaptopathy at the basis of the neurodegenerative damage causing irreversible disability in these disorders. This synaptopathy is characterized by an imbalance between glutamatergic and GABAergic transmission and has been proposed to be a potential therapeutic target. Siponimod (BAF312), a selective sphingosine 1-phosphate1,5 receptor modulator, is currently under investigation in a clinical trial in secondary progressive MS patients. We investigated whether siponimod, in addition to its peripheral immune modulation, may exert direct neuroprotective effects in the central nervous system (CNS) of mice with chronic progressive EAE.. Minipumps allowing continuous intracerebroventricular (icv) infusion of siponimod for 4 weeks were implanted into C57BL/6 mice subjected to MOG35-55-induced EAE. Electrophysiology, immunohistochemistry, western blot, qPCR experiments, and peripheral lymphocyte counts were performed. In addition, the effect of siponimod on activated microglia was assessed in vitro to confirm the direct effect of the drug on CNS-resident immune cells.. Siponimod administration (0.45 μg/day) induced a significant beneficial effect on EAE clinical scores with minimal effect on peripheral lymphocyte counts. Siponimod rescued defective GABAergic transmission in the striatum of EAE, without correcting the EAE-induced alterations of glutamatergic transmission. We observed a significant attenuation of astrogliosis and microgliosis together with reduced lymphocyte infiltration in the striatum of EAE mice treated with siponimod. Interestingly, siponimod reduced the release of IL-6 and RANTES from activated microglial cells in vitro, which might explain the reduced lymphocyte infiltration. Furthermore, the loss of parvalbumin-positive (PV+) GABAergic interneurons typical of EAE brains was rescued by siponimod treatment, providing a plausible explanation of the selective effects of this drug on inhibitory synaptic transmission.. Altogether, our results show that siponimod has neuroprotective effects in the CNS of EAE mice, which are likely independent of its peripheral immune effect, suggesting that this drug could be effective in limiting neurodegenerative pathological processes in MS.

    Topics: Animals; Antigens, CD; Azetidines; Benzyl Compounds; Calcium-Binding Proteins; Cell Line, Transformed; Cerebral Cortex; Cytokines; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Freund's Adjuvant; Mice; Microfilament Proteins; Myelin-Oligodendrocyte Glycoprotein; Nerve Degeneration; Neural Conduction; Neuroglia; Neurons; Neuroprotective Agents; Peptide Fragments; Synapses; Synaptic Potentials; T-Lymphocytes; White Matter

2016