sincalide has been researched along with Spinal-Cord-Injuries* in 1 studies
1 other study(ies) available for sincalide and Spinal-Cord-Injuries
Article | Year |
---|---|
Experimental spinal cord injury in rats diminishes vagally-mediated gastric responses to cholecystokinin-8s.
We have shown recently that our model of experimental high-thoracic spinal cord injury (T3-SCI) mirrors the gastrointestinal clinical presentation of neurotrauma patients, whereby T3-SCI animals show diminished gastric emptying and dysmotility. In this study we used cholecystokinin as a model peptide to test the hypothesis that the T3-SCI induced gastroparesis is due, in part, to an impaired vagally-mediated response to gastrointestinal peptides.. We measured the responses to sulfated cholecystokinin (CCK-8s) in control and T3-SCI (3 or 21 days after injury) rats utilizing: (i) c-fos expression in the nucleus tractus solitarius (NTS) following peripherally administered CCK-8s; (ii) in vivo gastric tone and motility following unilateral microinjection of CCK-8s into the dorsal vagal complex (DVC); and (iii) whole cell recordings of glutamatergic synaptic inputs to NTS neurons.. Our results show that: (i) medullary c-fos expression in response to peripheral CCK-8s was significantly lower in T3-SCI rats 3 days after the injury, but recovered to control values at 3 weeks post-SCI, (ii) Unilateral microinjection of CCK-8s in the DVC induced a profound gastric relaxation in control animals, but did not induce any response in T3-SCI rats at both 3 and 21 days after SCI, (iii) Perfusion with CCK-8s increased glutamatergic currents in 55% of NTS neurons from control rats, but failed to induce any response in NTS neurons from T3-SCI rats.. Our data indicate alterations of vagal responses to CCK-8s in T3-SCI rats that may reflect a generalized impairment of gastric vagal neurocircuitry, leading to a reduction of gastric functions after SCI. Topics: Animals; Cholecystokinin; Excitatory Postsynaptic Potentials; Gastroparesis; Injections, Intraperitoneal; Male; Models, Animal; Patch-Clamp Techniques; Peptide Fragments; Rats; Rats, Wistar; Solitary Nucleus; Spinal Cord Injuries; Stomach; Thoracic Vertebrae; Vagus Nerve | 2011 |