sincalide has been researched along with Peripheral-Nervous-System-Diseases* in 3 studies
1 review(s) available for sincalide and Peripheral-Nervous-System-Diseases
Article | Year |
---|---|
Effects of cholecystokinin-8 in peripheral neuropathies: a nerve growth factor mediated action?
Topics: Animals; Ganglia, Spinal; Humans; Nerve Growth Factor; Nerve Regeneration; Neurons, Afferent; Neuroprotective Agents; Peripheral Nervous System Diseases; Sincalide; Sympathetic Fibers, Postganglionic | 2003 |
2 other study(ies) available for sincalide and Peripheral-Nervous-System-Diseases
Article | Year |
---|---|
Non-opioid actions of lamotrigine within the rat dorsal horn after inflammation and neuropathic nerve damage.
Some opioid-resistant pain conditions can be alleviated by voltage-dependent Na(+) channel blockers such as lamotrigine. The mu-opioid-receptor agonist morphine can modulate cation entry into cells to affect overall cellular excitability, an effect which can in turn be endogenously antagonised by the neuropeptide cholecystokinin (CCK). However, lamotrigine may also modulate cellular excitability by non-specifically blocking voltage-dependent ion channels. We have looked for interactions of lamotrigine with the opioid/CCK pathway within the spinal dorsal horn, to rule out the possibility that lamotrigine may attenuate nociceptive responses via actions on this pathway. Both lamotrigine and the mu-opioid agonist DAMGO inhibited mustard oil-evoked cell firing by approximately 50% compared with control levels. Co-application of CCK8S reversed DAMGO-, but not lamotrigine-induced inhibition of cell firing and this reversal was prevented with the selective CCK(B) receptor antagonist PD 135158. Although lamotrigine inhibited both brush- and cold-evoked cell firing in neuropathic animals, lamotrigine inhibition of mustard oil-evoked cell firing in the same animals was not significantly greater than that observed in controls. These results suggest that the antinociceptive properties of lamotrigine within the spinal dorsal horn are unlikely to be mediated via interactions with the opioid/CCK pathway. Topics: Action Potentials; Analgesics, Opioid; Animals; Anti-Anxiety Agents; Calcium Channel Blockers; Cholecystokinin; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Indoles; Inflammation; Lamotrigine; Male; Meglumine; Mustard Plant; Neural Pathways; Nociceptors; Opioid Peptides; Pain; Peripheral Nervous System Diseases; Plant Extracts; Plant Oils; Posterior Horn Cells; Rats; Rats, Wistar; Sincalide; Triazines | 2001 |
Cholecystokinin-8 enhances nerve growth factor synthesis and promotes recovery of capsaicin-induced sensory deficit.
Alterations of nerve growth factor (NGF) expression have been demonstrated during peripheral nerve disease and the impaired expression or synthesis and transportation of NGF has been correlated with the pathogenesis of several peripheral neuropathies. Since exogenous NGF administration seems to cause undesired side-effects, therapeutical strategies based on the regulation of endogenous synthesis of NGF could prove useful in the clinical treatment of these disorders. The aim of the present study was to analyse the effects of exogenous peripheral administration of the neuropeptide cholecystokinin-8 (CCK-8) on endogenous NGF synthesis, NGF mRNA and distribution of peripheral neuropeptides which are known to be regulated by this neurotrophin. To address these questions we studied the effects of capsaicin (CAPS) before and after the administration of CCK-8 on NGF levels, NGF mRNA expression and localization, and the concentration of substance P (SP) and calcitonin gene-related peptide (CGRP) in peripheral tissue These studies demonstrate that administration of the CCK-8 induces an increase of NGF protein and mRNA in peripheral tissue. NGF level in paw skin of CAPS/CCK-8-treated mice is 3 fold higher than in controls (1241+/-110 pg gr(-1) of tissue wet weight versus 414+/-110 pg gr(-1) of controls) and nearly 6 fold higher than in CAPS-treated mice (1241+/-110 pg gr(-1) versus 248+/-27 pg gr(-1)). The increase of NGF is correlated with the recovery of impaired nocifensive behaviour and with an overexpression of SP and CGRP. The evidence that CCK-8 promotes the recovery of sensory deficits suggests a potential clinical use for this neuropeptide in peripheral neuropathies. Topics: Animals; Behavior, Animal; Calcitonin Gene-Related Peptide; Capsaicin; Male; Mice; Nerve Growth Factor; Neurons, Afferent; Pain Threshold; Peripheral Nervous System Diseases; RNA, Messenger; Sincalide; Substance P; Up-Regulation | 2000 |