sincalide and Necrosis

sincalide has been researched along with Necrosis* in 9 studies

Other Studies

9 other study(ies) available for sincalide and Necrosis

ArticleYear
Strontium/Chitosan/Hydroxyapatite/Norcantharidin Composite That Inhibits Osteosarcoma and Promotes Osteogenesis In Vitro.
    BioMed research international, 2020, Volume: 2020

    Hydroxyapatite can deliver drugs, and its composite material is capable of repairing bone defects in tumors. This study was conducted to evaluate the effect of composite materials on tumor growth inhibition and bone growth induction. Composites containing drug delivery compounds were synthesized by coprecipitation and freeze-drying and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). In addition, the effect of hydroxyapatite nanoparticles (nano-SHAP) on proliferation of an osteosarcoma cell line (MG-63) and an osteoblast cell line (MC3T3-E1) was evaluated, and its mechanism was studied. The use of nano-SHAP alone did not affect the proliferation of normal cell lines. However, nanoparticles containing different amounts of norcantharidin in the composite materials and had different inhibitory effects on osteosarcoma and different effects on osteoblasts. And, with the increase of the content of norcantharidin, the antitumor performance of the composite has been enhanced. In summary, the nano-SHAP system developed in this study is a drug delivery material that can inhibit the growth of tumors and induce the proliferation of osteoblasts.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Biocompatible Materials; Bone Development; Bridged Bicyclo Compounds, Heterocyclic; Cell Line, Tumor; Cell Proliferation; Chitosan; Freeze Drying; Humans; Hydroxyapatites; Microscopy, Electron, Scanning; Nanoparticles; Necrosis; Osteoblasts; Osteogenesis; Osteosarcoma; Particle Size; Sincalide; Spectroscopy, Fourier Transform Infrared; Strontium; X-Ray Diffraction

2020
Cholecystokinin-8 treatment reduces acinar necrosis and edema of pigs with induced pancreatitis.
    Asian journal of surgery, 2020, Volume: 43, Issue:1

    Acute pancreatitis is an inflammatory process of the pancreas and a leading cause of hospitalization amongst gastrointestinal disorders. Previously, cholecystokinin (CCK) has been described to play a role in regeneration of pancreas. The aim of this study was to analyse the function of cholecystokinin octapeptide (CCK-8) during induced pancreatitis in an animal model.. Overall acute pancreatitis was induced in 38 pigs. After the induction of acute pancreatitis, half of the animals were treated with CCK-8. Intraoperative clinical data, postoperative blood parameters, 'Porcine Well-being' (PWB) and fitness score and post-mortal histopathological data were analysed.. At baseline, physiologically parameters of the pigs of both groups were comparable. No differences were observed regarding the overall survival of animals (p = 0.97). Postoperative PWB score were significantly enhanced in animals treated with CCK-8 as compared to the control group (p = 0.029). Moreover, histopathological analysis of the pancreatic tissue revealed that acinar necrosis and edema were significant reduced in the CCK-8 group in comparison to the control group (p = 0.016 and p = 0.019).. In conclusion, we found that CCK-8 treatment reduces acinar necrosis and edema of pancreatic tissue after induction of an acute pancreatitis in pigs.

    Topics: Animals; Cholecystokinin; Disease Models, Animal; Necrosis; Pancreas; Pancreatitis; Peptide Fragments; Swine

2020
Dichotomy between Receptor-Interacting Protein 1- and Receptor-Interacting Protein 3-Mediated Necroptosis in Experimental Pancreatitis.
    The American journal of pathology, 2017, Volume: 187, Issue:5

    Pancreatic acinar cell necrosis and inflammatory responses are two key pathologic processes in acute pancreatitis (AP), which determines the severity and outcome of the disease. Recent studies suggest that necroptosis, a programed form of necrosis, is involved in the pathogenesis of AP, but the underlying mechanisms remain unknown. We investigated the expression of necrosome components, including receptor-interacting protein (RIP) 1, RIP3, and mixed lineage kinase domain-like (MLKL), and the molecular mechanisms in pancreatitis-associated necroptosis. We found that RIP3 and phosphorylated MLKL expression was positively related to the degree of necrosis, whereas RIP1 expression was negatively related to the degree of necrosis. Pharmacologic inhibition of RIP1 kinase activity exerted no protection against caerulein/cholecystokinin-8-induced AP, but knockdown of RIP1 with siRNA increased acinar cell necrosis and inhibition of NF-κB activation. RIP1 inhibition led to enhanced RIP3 expression. RIP3 and MLKL inhibition decreased acinar cell necrosis, in which the inhibition of RIP3 reduced the phosphorylation level of MLKL. RIP3 inhibition had no effect on trypsinogen activation but partly inhibited inflammasome activation. Our study strongly suggests that the imbalance between RIP1 and RIP3 shifts the cell death to necrosis, which unravels a new molecular pathogenesis of mechanism of AP and may provide insight into the development of novel therapeutic agent for other necrosis-related diseases.

    Topics: Acinar Cells; Acute Disease; Animals; Apoptosis; Ceruletide; Cholecystokinin; Irritants; Male; Mice, Inbred BALB C; Mice, Inbred C57BL; Necrosis; Pancreatitis; Peptide Fragments; Phosphorylation; Protein Kinase Inhibitors; Rats, Sprague-Dawley; Receptor-Interacting Protein Serine-Threonine Kinases

2017
Pyrroloquinoline quinone against glutamate-induced neurotoxicity in cultured neural stem and progenitor cells.
    International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience, 2015, Volume: 42

    Pyrroloquinoline quinone (PQQ), as a well-known redox enzyme cofactor, has been proven to play important roles in the regulation of cellular growth and development in mammals. Numerous physiological and medicinal functions of PQQ have so far been reported although its effect on neural stem and progenitor cells (NS/PCs) and the potential mechanism were even rarely investigated. In this study, the neuroprotective effects of PQQ were observed by pretreatment of NS/PCs with PQQ before glutamate injury, and the possible mechanisms were examined. PQQ stimulated cell proliferation and markedly attenuated glutamate-induced cell damage in a dose-dependent manner. By observing the nuclear morphological changes and flow cytometric analysis, PQQ pretreatment showed its significant effect on protecting NS/PCs against glutamate-induced apoptosis/necrosis. PQQ neuroprotection was associated with the decrease of intracellular reactive oxygen species (ROS) production, the increase of glutathione (GSH) levels, and the decrease of caspase-3 activity. In addition, pretreatment with PQQ also significantly enhanced the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in the NS/PCs exposed to glutamate. These results suggest that PQQ can protect NS/PCs against glutamate toxicity associated with ROS-mediated mitochondrial pathway, indicating a useful chemical for the clinical application of NS/PCs.

    Topics: Animals; Annexin A5; Anthracenes; Apoptosis; Bromodeoxyuridine; Caspase 3; Cell Nucleus Size; Cell Survival; Cells, Cultured; Embryo, Mammalian; Excitatory Amino Acid Agonists; Glutamic Acid; Glutathione; Glutathione Peroxidase; Hippocampus; Necrosis; Neurons; PQQ Cofactor; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Sincalide; Stem Cells

2015
Genetic inhibition of protein kinase Cε attenuates necrosis in experimental pancreatitis.
    American journal of physiology. Gastrointestinal and liver physiology, 2014, Sep-01, Volume: 307, Issue:5

    Understanding the regulation of death pathways, necrosis and apoptosis, in pancreatitis is important for developing therapies directed to the molecular pathogenesis of the disease. Protein kinase Cε (PKCε) has been previously shown to regulate inflammatory responses and zymogen activation in pancreatitis. Furthermore, we demonstrated that ethanol specifically activated PKCε in pancreatic acinar cells and that PKCε mediated the sensitizing effects of ethanol on inflammatory response in pancreatitis. Here we investigated the role of PKCε in the regulation of death pathways in pancreatitis. We found that genetic deletion of PKCε resulted in decreased necrosis and severity in the in vivo cerulein-induced pancreatitis and that inhibition of PKCε protected the acinar cells from CCK-8 hyperstimulation-induced necrosis and ATP reduction. These findings were associated with upregulation of mitochondrial Bak and Bcl-2/Bcl-xL, proapoptotic and prosurvival members in the Bcl-2 family, respectively, as well as increased mitochondrial cytochrome c release, caspase activation, and apoptosis in pancreatitis in PKCε knockout mice. We further confirmed that cerulein pancreatitis induced a dramatic mitochondrial translocation of PKCε, suggesting that PKCε regulated necrosis in pancreatitis via mechanisms involving mitochondria. Finally, we showed that PKCε deletion downregulated inhibitors of apoptosis proteins, c-IAP2, survivin, and c-FLIPs while promoting cleavage/inactivation of receptor-interacting protein kinase (RIP). Taken together, our findings provide evidence that PKCε activation during pancreatitis promotes necrosis through mechanisms involving mitochondrial proapoptotic and prosurvival Bcl-2 family proteins and upregulation of nonmitochondrial pathways that inhibit caspase activation and RIP cleavage/inactivation. Thus PKCε is a potential target for prevention and/or treatment of acute pancreatitis.

    Topics: Acinar Cells; Animals; Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; CASP8 and FADD-Like Apoptosis Regulating Protein; Ceruletide; Cytochromes c; Ethanol; Gene Deletion; Inhibitor of Apoptosis Proteins; Mice; Mice, Inbred C57BL; Necrosis; Pancreas; Pancreatitis; Protein Kinase C-epsilon; Proto-Oncogene Proteins c-bcl-2; Receptor-Interacting Protein Serine-Threonine Kinases; Sincalide

2014
Prosurvival Bcl-2 proteins stabilize pancreatic mitochondria and protect against necrosis in experimental pancreatitis.
    Experimental cell research, 2009, Jul-01, Volume: 315, Issue:11

    Acinar cells in pancreatitis die through apoptosis and necrosis, the roles of which are different. The severity of experimental pancreatitis correlates directly with the extent of necrosis and inversely, with apoptosis. Apoptosis is mediated by the release of cytochrome c into the cytosol followed by caspase activation, whereas necrosis is associated with the mitochondrial membrane potential (DeltaPsim) loss leading to ATP depletion. Here, we investigate the role of Bcl-2 proteins in apoptosis and necrosis in pancreatitis. We found up-regulation of prosurvival Bcl-2 proteins in pancreas in various experimental models of acute pancreatitis, most pronounced for Bcl-xL. This up-regulation translated into increased levels of Bcl-xL and Bcl-2 in pancreatic mitochondria. Bcl-xL/Bcl-2 inhibitors induced DeltaPsim loss and cytochrome c release in isolated mitochondria. Corroborating the results on mitochondria, Bcl-xL/Bcl-2 inhibitors induced DeltaPsim loss, ATP depletion and necrosis in pancreatic acinar cells, both untreated and hyperstimulated with CCK-8 (in vitro pancreatitis model). Together Bcl-xL/Bcl-2 inhibitors and CCK induced more necrosis than either treatment alone. Bcl-xL/Bcl-2 inhibitors also stimulated cytochrome c release in acinar cells leading to caspase-3 activation and apoptosis. However, different from their effect on pronecrotic signals, the stimulation by Bcl-xL/Bcl-2 inhibitors of apoptotic responses was less in CCK-treated than control cells. Therefore, Bcl-xL/Bcl-2 inhibitors potentiated CCK-induced necrosis but not apoptosis. Correspondingly, transfection with Bcl-xL siRNA stimulated necrosis but not apoptosis in the in vitro pancreatitis model. Further, in animal models of pancreatitis Bcl-xL up-regulation inversely correlated with necrosis, but not apoptosis. Results indicate that Bcl-xL and Bcl-2 protect acinar cells from necrosis in pancreatitis by stabilizing mitochondria against death signals. We conclude that Bcl-xL/Bcl-2 inhibition would aggravate acute pancreatitis, whereas Bcl-xL/Bcl-2 up-regulation presents a strategy to prevent or attenuate necrosis in pancreatitis.

    Topics: Adenosine Triphosphate; Animals; Base Sequence; bcl-X Protein; Capsid Proteins; Caspase 3; Ceruletide; Cytochromes c; Disease Models, Animal; DNA Primers; Gene Expression; In Vitro Techniques; Male; Membrane Potential, Mitochondrial; Mice; Mitochondria; Necrosis; Pancreas; Pancreatitis, Acute Necrotizing; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sincalide

2009
Cholecystokinin-58 and cholecystokinin-8 exhibit similar actions on calcium signaling, zymogen secretion, and cell fate in murine pancreatic acinar cells.
    American journal of physiology. Gastrointestinal and liver physiology, 2009, Volume: 297, Issue:6

    The gastrointestinal hormone CCK exists in various molecular forms, with differences in bioactivity between the well-characterized CCK-8 and larger CCK-58 previously reported. We have compared the effects of these peptides on cytosolic calcium concentration ([Ca(2+)](c)), mitochondrial metabolism, enzyme secretion, and cell fate in murine isolated pancreatic acinar cells using fluorescence confocal microscopy and patch-clamp electrophysiology. CCK-58 (1-10 pM) induced transient, oscillatory increases of [Ca(2+)](c), which showed apical to basolateral progression and were associated with a rise of mitochondrial NAD(P)H. CCK-58 (10 pM) induced zymogen exocytosis in isolated cells and amylase secretion from isolated cells and whole tissues. Hyperstimulation with supraphysiological CCK-58 (5 nM) induced a single large increase of [Ca(2+)](c) that declined to a plateau, which remained above the basal level 20 min after application and was dependent on external Ca(2+) entry. In cells dispersed from the same tissues, CCK-8 induced similar patterns of responses to those of CCK-58, with oscillatory increases of [Ca(2+)](c) at lower (pM) concentrations and sustained responses at 5 nM. CCK-58 and CCK-8 exhibited similar profiles of action on cell death, with increases in necrosis at high CCK-58 and CCK-8 (10 nM) that were not significantly different between peptides. The present experiments indicate that CCK-8 and CCK-58 have essentially identical actions on the acinar cell at high and low agonist concentrations, suggesting an action via the same receptor and that the differences observed in an intact rat model may result from indirect effects of the peptides. Our data strengthen the argument that CCK-58 is an important physiological form of this gastrointestinal hormone.

    Topics: Amylases; Animals; Calcium Signaling; Cell Differentiation; Cholecystokinin; Enzyme Precursors; Exocytosis; Humans; Membrane Potentials; Mice; Microscopy, Confocal; Microscopy, Fluorescence; Mitochondria; Necrosis; Pancreas, Exocrine; Patch-Clamp Techniques; Peptide Fragments; Time Factors

2009
Acute pancreatitis in rats: effects of sodium taurocholate, CCK-8, and Sec on pancreatic microcirculation.
    The American journal of physiology, 1997, Volume: 272, Issue:2 Pt 1

    With use of in vivo microscopy, pancreatic duct permeability, red blood cell (RBC) velocities, functional capillary density (FCD), and overall changes in capillary blood flow (perfusion index) were estimated after intraductal infusion of sodium taurocholate (0.8 ml, 4%) alone or in combination with systemic administration of cholecystokinin (CCK, 0.3 microg/100 g body wt) or secretin (Sec, 10 microg/100 g body wt). Sodium taurocholate mediated a significant increase in pancreatic duct and capillary permeability within 105 +/- 26 s followed by a transient decrease in RBC velocities and a sustained decrease in FCD, which were paralleled by dramatic flow heterogeneity. Therefore, a significant reduction in overall capillary blood flow was calculated. CCK stimulation aggravated the microcirculatory failure due to a decrease in RBC velocities, which was accompanied by an increase in acinar cellular necrosis. Sec stimulation attenuated microcirculatory failure due to a more moderate reduction of FCD. The enhanced pancreatic duct and capillary permeability, which enables free diffusion of pancreatic digestive enzymes into the parenchyma, is the initiating event in acute biliary pancreatitis, causing microcirculatory failure and tissue damage. The microcirculatory changes are secondary and a propagating factor for the development of acini necrosis. Stimulation with CCK worsened the course of acute biliary pancreatitis.

    Topics: Acute Disease; Animals; Male; Microcirculation; Necrosis; Pancreas; Pancreatitis; Rats; Rats, Inbred Lew; Secretin; Sincalide; Taurocholic Acid

1997
Involvement of cholecystokinin receptors in the adverse effect of glucocorticoids on diet-induced necrotizing pancreatitis.
    Surgery, 1989, Volume: 106, Issue:2

    The mechanism that explains the association between corticoids and acute pancreatitis is unknown. Our hypothesis was that chronic glucocorticoid treatment could adversely affect the course of hemorrhagic pancreatitis by acting through cholecystokinin (CCK) receptors. Acute necrotizing pancreatitis was induced by feeding young female mice a choline-deficient, ethionine-supplemented (CDE) diet for 60 hours. Treatment with hydrocortisone (10 mg/kg/day) was begun 1 week before pancreatitis. At the onset of the CDE diet, a group of hydrocortisone-treated mice were also given the CCK receptor antagonist CR-1409 (5 mg/kg three times a day). Control mice received injections of saline solution. A follow-up of 336 hours was conducted for survival analysis. Hydrocortisone given alone did not produce pancreatitis. Hydrocortisone, however, did increase the pancreatic necrosis caused by the CDE diet (from 40% to 70%) and significantly reduce survival (from 40% to 9%). CR-1409 completely abolished the adverse effects of hydrocortisone on pancreatitis. We measured amylase release by dispersed pancreatic acini from mice chronically treated with hydrocortisone in response to CCK-8. Treatment with hydrocortisone increased both the sensitivity and the responsiveness of the pancreas to CCK-8. We conclude that glucocorticoids alone may not induce acute pancreatitis, but they can increase the risk of a more severe form of pancreatitis developing. The glucocorticoid effect appears to be attributable to a CCK receptor-mediated sensitization of the pancreas to endogenous CCK. Thus, CCK-receptor blockade may improve survival in necrotizing pancreatitis associated with chronic glucocorticoid treatments.

    Topics: Amylases; Animals; Choline Deficiency; Diet; Dose-Response Relationship, Drug; Ethionine; Female; Glucocorticoids; Hydrocortisone; Mice; Mice, Inbred Strains; Necrosis; Pancreas; Pancreatitis; Proglumide; Receptors, Cholecystokinin; Sincalide

1989