sincalide and Epilepsy

sincalide has been researched along with Epilepsy* in 5 studies

Other Studies

5 other study(ies) available for sincalide and Epilepsy

ArticleYear
LTBP1 Gene Expression in the Cerebral Cortex and its Neuroprotective Mechanism in Mice with Postischemic Stroke Epilepsy.
    Current pharmaceutical biotechnology, 2023, Volume: 24, Issue:2

    This study aimed at exploring the expression level of LTBP1 in the mouse model of epilepsy. The mechanism of LTBP1 in epileptic cerebral neural stem cells was deeply investigated to control the occurrence of epilepsy with neuroprotection.. qRT-PCR was conducted for the expression levels of LTBP1 in clinical human epileptic tissues and neural stem cells, as well as normal cerebral tissues and neural stem cells. The mouse model of postischemic stroke epilepsy (PSE) was established by the middle cerebral artery occlusion (MCAO). Then, qRT-PCR was conducted again for the expression levels of LTBP1 in mouse epileptic tissues and neural stem cells as well as normal cerebral tissues and neural stem cells. The activation and inhibitory vectors of LTBP1 were constructed to detect the effects of LTBP1 on the proliferation of cerebral neural stem cells in the PSE model combined with CCK-8. Finally, Western blot was conducted for the specific mechanism of LTBP1 affecting the development of epileptic cells.. Racine score and epilepsy index of 15 mice showed epilepsy symptoms after the determination with MCAO, showing a successful establishment of the PSE model. LTBP1 expression in both diseased epileptic tissues and cells was higher than that in normal clinical epileptic tissues and cells. Meanwhile, qRT-PCR showed higher LTBP1 expression in both mouse epileptic tissues and their neural stem cells compared to that in normal tissues and cells. CCK-8 showed that the activation of LTBP1 stimulated the increased proliferative capacity of epileptic cells, while the inhibition of LTBP1 expression controlled the proliferation of epileptic cells. Western blot showed an elevated expression of TGFβ/SMAD signaling pathway-associated protein SMAD1/5/8 after activating LTBP1. The expression of molecular MMP-13 associated with the occurrence of inflammation was also activated.. LTBP1 can affect the changes in inflammation-related pathways by activating the TGFβ/SMAD signaling pathway and stimulate the development of epilepsy, and the inhibition of LTBP1 expression can control the occurrence of epilepsy with neuroprotection.

    Topics: Animals; Cerebral Cortex; Disease Models, Animal; Epilepsy; Gene Expression; Humans; Inflammation; Latent TGF-beta Binding Proteins; Mice; Neuroprotection; Sincalide; Stroke; Transforming Growth Factor beta

2023
Design, physico-chemical properties and biological evaluation of some new N-[(phenoxy)alkyl]- and N-{2-[2-(phenoxy)ethoxy]ethyl}aminoalkanols as anticonvulsant agents.
    Bioorganic & medicinal chemistry, 2016, Apr-15, Volume: 24, Issue:8

    A series of thirty N-(phenoxy)alkyl or N-{2-[2-(phenoxy)ethoxy]ethyl}aminoalkanols has been designed, synthesized and evaluated for anticonvulsant activity in MES, 6Hz test, and pilocarpine-induced status epilepticus. Among the title compounds, the most promising seems R-(-)-2N-{2-[2-(2,6-dimethylphenoxy)ethoxy]ethyl}aminopropan-1-ol hydrochloride (22a) with proved absolute configuration with X-ray analysis and enantiomeric purity. The compound is effective in MES test with ED50=12.92 mg/kg b.w. and its rotarod TD50=33.26 mg/kg b.w. The activity dose is also effective in a neurogenic pain model-the formalin test. Within high throughput profile assay, among eighty one targets, the strongest affinity of the compound is observed towards σ receptors and 5-HT transporter and the compound does not bind to hERG. It also does not exhibit mutagenic properties in the Vibrio harveyi test. Moreover, murine liver microsomal assay and pharmacokinetics profile (mice, iv, p.o., ip) indicate that the liver is the primary site of biotransformation of the compound, suggesting that both 22a and its metabolite(s) are active, compensating probably low bioavailability of the parent molecule.

    Topics: Amino Alcohols; Animals; Anticonvulsants; Chemistry, Physical; Dose-Response Relationship, Drug; Drug Design; Epilepsy; Male; Mice; Microsomes, Liver; Molecular Structure; Pilocarpine

2016
Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus.
    Experimental neurology, 2005, Volume: 194, Issue:1

    Major aspects of temporal lobe epilepsy (TLE) can be reproduced in mice following a unilateral injection of kainic acid into the dorsal hippocampus. This treatment induces a non-convulsive status epilepticus and acute lesion of CA1, CA3c and hilar neurons, followed by a latent phase with ongoing ipsilateral neuronal degeneration. Spontaneous focal seizures mark the onset of the chronic phase. In striking contrast, the ventral hippocampus and the contralateral side remain structurally unaffected and seizure-free. In this study, functional and neurochemical alterations of the contralateral side were studied to find candidate mechanisms underlying the lack of a mirror focus in this model of TLE. A quantitative analysis of simultaneous, bilateral EEG recordings revealed a significant decrease of theta oscillations ipsilaterally during the latent phase and bilaterally during the chronic phase. Furthermore, the synchronization of bilateral activity, which is very high in control, was strongly reduced already during the latent phase and the decrease was independent of recurrent seizures. Immunohistochemical analysis performed in the contralateral hippocampus of kainate-treated mice revealed reduced calbindin-labeling of CA1 pyramidal cells; down-regulation of CCK-8 and up-regulation of NPY-labeling in mossy fibers; and a redistribution of galanin immunoreactivity. These changes collectively might limit neuronal excitability in CA1 and dentate gyrus, as well as glutamate release from mossy fiber terminals. Although these functional and neurochemical alterations might not be causally related, they likely reflect long-ranging network alterations underlying the independent evolution of the two hippocampal formations during the development of an epileptic focus in this model of TLE.

    Topics: Action Potentials; Animals; Brain Chemistry; Calbindins; Chronic Disease; Disease Models, Animal; Down-Regulation; Electroencephalography; Epilepsy; Epilepsy, Temporal Lobe; Functional Laterality; Galanin; Hippocampus; Kainic Acid; Mice; Mossy Fibers, Hippocampal; Nerve Degeneration; Neural Pathways; Neuropeptide Y; Neurotoxins; Pyramidal Cells; S100 Calcium Binding Protein G; Sincalide; Status Epilepticus; Theta Rhythm; Up-Regulation

2005
Lipofectin-facilitated transfer of cholecystokinin gene corrects behavioral abnormalities of rats with audiogenic seizures.
    Neuroscience, 1997, Volume: 77, Issue:1

    To evaluate the potential for lipofectin-mediated central nervous system gene transfer, the plasmid coding for cholecystokinin was administered intracerebroventricularly to rats, which have congenital audiogenic seizures and high responses to peripheral electric stimulation-induced analgesia. Previous studies had shown that low brain cholecystokinin levels may be the neurochemical variable of rat's audiogenic seizure and high responses to the analgesia because cholecystokinin is an anticonvulsant and anti-opioid neuropeptide. Gene transfer of cholecystokinin corrected the increased susceptibility to audiogenic seizures and the high responses to analgesia for about one week. Similar administration of plasmid expressing beta-galactosidase indicated that the vector mainly transfected ependymal cells lining the ventricle and pia mater cells. The increased cholecystokinin messenger RNA and immunoreactivity in the hippocampus following stereotactic intrahippocampal administration of cholecystokinin plasmid was also demonstrated with in situ hybridization and immunohistochemistry techniques. These results suggest that lipofectin-mediated gene transfer will be useful for studies of brain function, the modification of behavior and gene therapy for central nervous system disorders.

    Topics: Acoustic Stimulation; Animals; Autoradiography; Behavior, Animal; DNA, Complementary; Epilepsy; Gene Transfer Techniques; Hippocampus; Immunohistochemistry; In Situ Hybridization; Liposomes; Male; Microinjections; Phosphatidylethanolamines; Plasmids; Rats; Rats, Mutant Strains; Rats, Wistar; RNA, Messenger; Seizures; Sincalide

1997
Effect of CCK-8 on audiogenic epileptic seizure in P77PMC rats.
    Neuropeptides, 1993, Volume: 25, Issue:1

    P77PMC rat is a breed of rat with congenital audiogenic seizure(AS). AS attacks were suppressed by cholecystokinin octapeptide (CCK-8) injected intraperitoneally (i.p.) at a dose of 50 micrograms/kg, but not at 25 micrograms/kg. Radioimmunoassay study showed that the CCK-8 immunoreactivity (IR) in the cerebrocortex and hippocampus is much lower in P77PMC rats than that of Wistar rats. The results suggest that a low cerebral content of CCK-8 may account for the high susceptibility of audiogenic seizure in P77PMC rats.

    Topics: Acoustic Stimulation; Animals; Cerebral Cortex; Epilepsy; Hippocampus; Injections, Intraperitoneal; Rats; Rats, Mutant Strains; Rats, Wistar; Severity of Illness Index; Sincalide

1993