silicon has been researched along with Cell-Transformation--Neoplastic* in 6 studies
6 other study(ies) available for silicon and Cell-Transformation--Neoplastic
Article | Year |
---|---|
A single-cell correlative nanoelectromechanosensing approach to detect cancerous transformation: monitoring the function of F-actin microfilaments in the modulation of the ion channel activity.
Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane. Topics: Actin Cytoskeleton; Actins; Biosensing Techniques; Cell Line, Tumor; Cell Membrane; Cell Transformation, Neoplastic; Electricity; HT29 Cells; Humans; Ion Channels; Microscopy, Confocal; Nanotubes; Neoplasms; Silicon | 2015 |
Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration.
It is now well established that tumor cell invasion through tissue is strongly regulated by the microstructural and mechanical properties of the extracellular matrix (ECM). However, it remains unclear how these physical microenvironmental inputs are jointly processed with oncogenic lesions to drive invasion. In this study, we address this open question by combining a microfabricated polyacrylamide channel (μPAC) platform that enables independent control of ECM stiffness and confinement with an isogenically-matched breast tumor progression series in which the oncogenes ErbB2 and 14-3-3ζ are overexpressed independently or in tandem. We find that increasing channel confinement and overexpressing ErbB2 both promote cell migration to a similar degree when other parameters are kept constant. In contrast, 14-3-3ζ overexpression slows migration speed, and does so in a fashion that dwarfs effects of ECM confinement and stiffness. We also find that ECM stiffness dramatically enhances cell motility when combined with ErbB2 overexpression, demonstrating that biophysical cues and cell-intrinsic parameters promote cell invasion in an integrative manner. Morphometric analysis of cells inside the μPAC platform reveals that the rapid cell migration induced by narrow channels and ErbB2 overexpression are both accompanied by increased cell polarization. Disruption of this polarization occurs by pharmacological inhibition of Rac GTPase phenocopies 14-3-3ζ overexpression by reducing cell polarization and slowing migration. By systematically measuring migration speed as a function of matrix stiffness and confinement, we also quantify for the first time the sensitivity of migration speed to microchannel properties and transforming potential. These results demonstrate that oncogenic lesions and ECM biophysical properties can synergistically interact to drive invasive migration, and that both inputs may act through common molecular mechanisms to enhance migration speed. Topics: 14-3-3 Proteins; Acrylic Resins; Cell Culture Techniques; Cell Line, Tumor; Cell Movement; Cell Transformation, Neoplastic; Extracellular Matrix; Humans; Hydrogel, Polyethylene Glycol Dimethacrylate; Microscopy, Confocal; Microscopy, Phase-Contrast; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasms; rac GTP-Binding Proteins; Receptor, ErbB-2; Silicon | 2013 |
Three methods for 18F labeling of the HER2-binding affibody molecule Z(HER2:2891) including preclinical assessment.
Human epidermal growth factor receptor (HER2)-targeted Affibody molecules radiolabeled with (18)F allow the noninvasive assessment of HER2 status in vivo through PET imaging. Such agents have the potential to improve patient management by selecting individuals for HER2-targeted therapies and allowing therapy monitoring. The aim of this study was to assess different (18)F radiolabeling strategies of the HER2-specific Affibody molecule Z(HER2:2891), preclinically determine the biologic efficacy of the different radiolabel molecules, and select a preferred radiolabeling strategy to progress for automated manufacture.. Cysteine was added to the C terminus of the Affibody molecule for the coupling of maleimide linkers, and 3 radiolabeling strategies were assessed: silicon-fluoride acceptor approach ((18)F-SiFA), (18)F-AlF-NOTA, and 4-(18)F-fluorobenzaldehyde ((18)F-FBA). The biodistributions of the radiolabeled Affibody molecules were then determined in naïve CD-1 nude mice, and tumor targeting was assessed in CD-1 nude mice bearing high-HER2-expressing NCI-N87 tumors and low-HER2-expressing A431 tumors. The (111)In-ABY-025 compound, which has demonstrable clinical utility, served as a reference tracer.. The non-decay-corrected radiochemical yields based on starting (18)F-fluoride using the (18)F-FBA, (18)F-SiFA, and (18)F-AlF-NOTA methods were 13% ± 3% (n = 5), 38% ± 2% (n = 3), and 11% ± 4% (n = 6), respectively. In naïve mice, both the (18)F-AlF-NOTA-Z(HER2:2891) and the (111)In-ABY-025 compounds showed a significant kidney retention (70.3 ± 1.3 and 73.8 ± 3.0 percentage injected dose [%ID], respectively, at 90 min after injection), which was not observed for (18)F-FBA-Z(HER2:2891) or (18)F-SiFA-Z(HER2:2891) (4.8 ± 0.6 and 10.1 ± 0.7 %ID, respectively, at 90 min). The (18)F-SiFA-Z(HER2:2891) conjugate was compromised by increasing bone retention over time (5.3 ± 1.0 %ID/g at 90 min after injection), indicating defluorination. All the radiolabeled Affibody molecules assessed showed significantly higher retention in NCI-N87 tumors than A431 tumors at all time points (P < 0.05), and PET/CT imaging of (18)F-FBA-Z(HER2:2891) in a dual NCI-N87/A431 xenograft model demonstrated high tumor-to-background contrast for NCI-N87 tumors.. The HER2 Affibody molecule Z(HER2:2891) has been site-selectively radiolabeled by three (18)F conjugation methods. Preliminary biologic data have identified (18)F-FBA-Z(HER2:2891) (also known as GE226) as a favored candidate for further development and radiochemistry automation. Topics: Animals; Benzaldehydes; Cell Line, Tumor; Cell Transformation, Neoplastic; Fluorine Radioisotopes; Heterocyclic Compounds; Heterocyclic Compounds, 1-Ring; Humans; Isotope Labeling; Mice; Positron-Emission Tomography; Protein Binding; Radiochemistry; Receptor, ErbB-2; Recombinant Fusion Proteins; Silicon; Tomography, X-Ray Computed | 2013 |
Relative biological effectiveness of accelerated heavy ions for induction of morphological transformation in Syrian hamster embryo cells.
Syrian hamster embryo cells were used to study the morphological transformation induced by accelerated heavy ions with different linear energy transfer (LET) ranging from 13 to 400 keV/micron. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), then inoculated to culture dishes. Morphologically altered colonies were scored as transformants. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to X-rays first increased with LET, reached a maximum value of about 7 at 100 keV/micron, then decreased with the further increase of LET. Our findings confirmed that high LET heavy ions are much more effective than X-rays for the induction of in vitro cell transformation. Topics: Animals; Carbon; Cell Survival; Cell Transformation, Neoplastic; Cells, Cultured; Cricetinae; Embryo, Mammalian; Linear Energy Transfer; Mesocricetus; Relative Biological Effectiveness; Silicon; X-Rays | 1998 |
Neoplastic transformation of hamster embyro cells by heavy ions.
We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/micrometer. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/micrometer, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation. Topics: Animals; Carbon; Cell Line, Transformed; Cell Survival; Cell Transformation, Neoplastic; Cricetinae; Dose-Response Relationship, Radiation; Heavy Ions; Linear Energy Transfer; Mesocricetus; Radiation Dosage; Relative Biological Effectiveness; Silicon; Synchrotrons; X-Rays | 1998 |
The toxicity, in vitro, of silicon carbide whiskers.
To mouse cells in culture, SiC whiskers (SiCW) and asbestos are similarly cytotoxic, disrupting cell membranes and killing cells. Both shorten cell generation time, increase the rate of DNA synthesis, increase total cell DNA content, and cause a loss in growth control often associated with malignant cellular transformation. Within the narrow size range of materials examined, the amount of damage appeared to be more a function of the number of whiskers present than of their size. Silicon carbide whiskers, if mishandled, may pose a serious health hazard to humans. Topics: 3T3 Cells; Animals; Carbon; Carbon Compounds, Inorganic; Cell Division; Cell Membrane Permeability; Cell Survival; Cell Transformation, Neoplastic; Chromium Radioisotopes; DNA; Dose-Response Relationship, Drug; Mice; Microscopy, Phase-Contrast; Silicon; Silicon Compounds; Trypan Blue | 1991 |