sildenafil-citrate has been researched along with Hypertrophy--Right-Ventricular* in 34 studies
1 review(s) available for sildenafil-citrate and Hypertrophy--Right-Ventricular
Article | Year |
---|---|
Pulmonary hypertension: an increasingly recognized complication of hereditary hemolytic anemias and HIV infection.
Modern health care has greatly increased longevity for patients with congenital hemolytic anemias (such as sickle cell disease and thalassemia) and human immunodeficiency virus (HIV) infection. It is estimated that 10% of patients with hemoglobinopathies and 0.5% of patients with HIV infection develop moderate to severe pulmonary hypertension. Pulmonary hypertension is a relentlessly progressive disease leading to right heart failure and death. Worldwide, there are an estimated 30 million patients with sickle cell disease or thalassemia and 40 million patients with HIV disease. Considering the prevalence of pulmonary vascular disease in these populations, sickle cell disease and HIV disease may be the most common causes of pulmonary hypertension worldwide. In this review, the available data on epidemiology, hemodynamics, mechanisms, and therapeutic strategies for these diseases are summarized. Because therapy is likely to reduce morbidity and prolong survival, efforts to screen, diagnose, and treat these patients represent a global health opportunity. Topics: Anemia, Hemolytic, Congenital; Anemia, Sickle Cell; Antiretroviral Therapy, Highly Active; Blood Transfusion; Echocardiography, Doppler, Color; Heart Failure; HIV Infections; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Piperazines; Purines; Sildenafil Citrate; Sulfones; Vasodilator Agents | 2008 |
2 trial(s) available for sildenafil-citrate and Hypertrophy--Right-Ventricular
Article | Year |
---|---|
Sildenafil preserves exercise capacity in patients with idiopathic pulmonary fibrosis and right-sided ventricular dysfunction.
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with pulmonary vasculopathy.. The purpose of this study was to determine whether sildenafil improves 6-min walk distance (6MWD) in subjects with IPF and right ventricular dysfunction.. The IPFnet, a network of IPF research centers in the United States, conducted a randomized trial examining the effect of sildenafil on 6MWD in patients with advanced IPF, defined by carbon monoxide diffusing capacity < 35% predicted. A substudy examined 119 of 180 randomized subjects where echocardiograms were available for independent review by two cardiologists. Right ventricular (RV) hypertrophy (RVH), right ventricular systolic dysfunction (RVSD), and right ventricular systolic pressure (RVSP) were assessed. Multivariable linear regression models estimated the relationship between RV abnormality, sildenafil treatment, and changes in 6MWD, St. George's Respiratory Questionnaire (SGRQ), the EuroQol instrument, and SF-36 Health Survey (SF-36) from enrollment to 12 weeks.. The prevalence of RVH and RVSD were 12.8% and 18.6%, respectively. RVSP was measurable in 71 of 119 (60%) subjects; mean RVSP was 42.5 mm Hg. In the subgroup of subjects with RVSD, subjects treated with sildenafil experienced less decrement in 6MWD (99.3 m; P = .01) and greater improvement in SGRQ (13.4 points; P = .005) and EuroQol visual analog scores (17.9 points; P = .04) than subjects receiving placebo. In the subgroup with RVH, sildenafil was not associated with change in 6MWD (P = .13), but was associated with greater relative improvement in SGRQ (14.8 points; P = .02) vs subjects receiving placebo. Sildenafil treatment in those with RVSD and RVH was not associated with change in SF-36.. Sildenafil treatment in IPF with RVSD results in better preservation of exercise capacity as compared with placebo. Sildenafil also improves quality of life in subjects with RVH and RVSD. Topics: Aged; Chi-Square Distribution; Double-Blind Method; Echocardiography; Female; Humans; Hypertrophy, Right Ventricular; Idiopathic Pulmonary Fibrosis; Male; Piperazines; Placebos; Purines; Quality of Life; Regression Analysis; Respiratory Function Tests; Sildenafil Citrate; Statistics, Nonparametric; Sulfones; Surveys and Questionnaires; Vasodilator Agents; Ventricular Dysfunction, Right; Walking | 2013 |
Phosphodiesterase type 5 and high altitude pulmonary hypertension.
This study explored phosphodiesterase type 5 (PDE5) inhibition as a strategy for treating high altitude pulmonary arterial hypertension (HAPH).. 689 subjects (313 men) of mean (SD) age 44 (0.6) years living above 2500 m were screened for HAPH by medical examination and electrocardiography, and 188 (27%) met the criteria for right ventricular hypertrophy. 44 underwent cardiac catheterisation and 29 (66%) had a resting mean pulmonary artery pressure (PAP) above 25 mmHg. 22 patients with a raised mean PAP were randomised to receive sildenafil (25 or 100 mg) or matching placebo taken 8 hourly for 12 weeks.. At 3 months, patients on sildenafil 25 mg 8 hourly (n = 9) had a significantly (p = 0.018) lower mean PAP (-6.9 mmHg) at the end of the dosing interval than those on placebo (n = 8) (95% CI -12.4 to -1.3). The treatment effect for sildenafil 100 mg 8 hourly (n = 5) compared with placebo was -6.4 mm Hg (95% CI -12.9 to 0.1). Both doses improved 6 minute walk distance, the lower dose by 45.4 m (95% CI 11.5 to 79.4; p = 0.011) and the higher dose by 40.0 m (95% CI 0.2 to 79.8; p = 0.049). Sildenafil was well tolerated. Necroscopic lung specimens from three subjects with HAPH showed abundant PDE5 in the muscular coat of remodelled pulmonary arterioles.. PDE5 is an attractive drug target for the treatment of HAPH and a larger study of the long term effects of PDE5 inhibition in HAPH is warranted. Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Adolescent; Adult; Aged; Aged, 80 and over; Altitude Sickness; Cyclic Nucleotide Phosphodiesterases, Type 5; Double-Blind Method; Electrocardiography; Female; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Middle Aged; Nitric Oxide; Phosphodiesterase Inhibitors; Phosphoric Diester Hydrolases; Piperazines; Purines; Sildenafil Citrate; Sulfones | 2005 |
31 other study(ies) available for sildenafil-citrate and Hypertrophy--Right-Ventricular
Article | Year |
---|---|
Sildenafil prevents right ventricular hypertrophy and improves heart rate variability in rats with pulmonary hypertension secondary to experimental diabetes.
Chronic treatment with sildenafil (SILD) is an effective protector on the development of cardiovascular complications of pulmonary hypertension (PH) and diabetes. However, to date, no studies have evaluated the effect of SILD on cardiopulmonary pathophysiology during PH secondary to type 1 diabetes.. The present study aimed to evaluate the beneficial effects of chronic SILD treatment on pulmonary arterial pressure, right ventricular hypertrophy (RVH) and cardiac autonomic dysfunction in rats with PH secondary to diabetes.. Male Sprague Dawley rats were randomly distributed into the control group (saline), diabetic group (60 mg/kg with streptozotocin), SILD-treated control group (20 mg/kg) and SILD-treated diabetic group.. After 8 weeks the type 1 diabetic animals presented PH, endothelial dysfunction of the pulmonary arteries, electrocardiographic alterations, RVH and overexpression of phosphodiesterase type 5 in the heart. In type 1 diabetic animals, SILD treatment prevented the development of PH, endothelial dysfunction and RVH. SILD treatment also prevented alterations in the corrected QT period and heart rate variability and prevented overexpression of phosphodiesterase type 5.. Our results indicate for the first time that SILD treatment prevents pulmonary arterial endothelial dysfunction, pulmonary hypertension, right ventricular hypertrophy and improves heart rate variability in type 1 diabetic rats. Topics: Animals; Cyclic Nucleotide Phosphodiesterases, Type 5; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Disease Models, Animal; Heart Rate; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Rats; Rats, Sprague-Dawley; Sildenafil Citrate | 2022 |
TPN171H alleviates pulmonary hypertension via inhibiting inflammation in hypoxia and monocrotaline-induced rats.
Pulmonary hypertension (PH) is a progressive and life-threatening disease with poor prognosis despite many advances in medical therapy over the past 20 years. Novel therapies which target on the underlying pathology of PH are still urgent to be met. TPN171H is a recently found new compound that exhibits potent pharmacological effects in PH via inhibiting phosphodiesterase type 5 (PDE-5). However, as one icariin derivative, the anti-inflammatory effects of TPN171H for treating PH are not clear. The present study was designed to investigate the therapeutical effect of TPN171H against inflammation in PH and reveal the underlying mechanism. Hypoxia and monocrotaline (MCT)-induced PH rat models were established, which were treated by oral administration of TPN171H (5, 25 mg/kg/d) or sildenafil (25 mg/kg/d). The right ventricle systolic pressure (RVSP), right ventricle hypertrophy index (RVHI) and vascular remodeling were measured. The results suggested that TPN171H significantly reduced RVSP and RVHI, and reversed pulmonary vascular remodeling in rats with both models. Furthermore, in in vivo and in vitro research, our data suggested that TPN171H remarkably suppressed cathepsin B-mediated NLRP3 inflammasome activation, which may contribute to its therapeutical function for PH. Topics: Animals; Anti-Inflammatory Agents; Cathepsin B; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Inflammasomes; Inflammation; Monocrotaline; NLR Family, Pyrin Domain-Containing 3 Protein; Phosphodiesterase 5 Inhibitors; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Sildenafil Citrate; Vascular Remodeling | 2022 |
NTP42, a novel antagonist of the thromboxane receptor, attenuates experimentally induced pulmonary arterial hypertension.
NTP42 is a novel antagonist of the thromboxane prostanoid receptor (TP), currently in development for the treatment of pulmonary arterial hypertension (PAH). PAH is a devastating disease with multiple pathophysiological hallmarks including excessive pulmonary vasoconstriction, vascular remodelling, inflammation, fibrosis, in situ thrombosis and right ventricular hypertrophy. Signalling through the TP, thromboxane (TX) A. PAH was induced by subcutaneous injection of 60 mg/kg MCT in male Wistar-Kyoto rats. Animals were assigned into groups: 1. 'No MCT'; 2. 'MCT Only'; 3. MCT + NTP42 (0.25 mg/kg BID); 4. MCT + Sildenafil (50 mg/kg BID), and 5. MCT + Selexipag (1 mg/kg BID), where 28-day drug treatment was initiated within 24 h post-MCT.. From haemodynamic assessments, NTP42 reduced the MCT-induced PAH, including mean pulmonary arterial pressure (mPAP) and right systolic ventricular pressure (RSVP), being at least comparable to the standard-of-care drugs Sildenafil or Selexipag in bringing about these effects. Moreover, NTP42 was superior to Sildenafil and Selexipag in significantly reducing pulmonary vascular remodelling, inflammatory mast cell infiltration and fibrosis in MCT-treated animals.. These findings suggest that NTP42 and antagonism of the TP signalling pathway have a relevant role in alleviating the pathophysiology of PAH, representing a novel therapeutic target with marked benefits over existing standard-of-care therapies. Topics: Acetamides; Animals; Antihypertensive Agents; Disease Models, Animal; Heart Ventricles; Hemodynamics; Humans; Hypertrophy, Right Ventricular; Male; Monocrotaline; Pulmonary Arterial Hypertension; Pulmonary Artery; Pyrazines; Rats; Rats, Inbred WKY; Receptors, Thromboxane; Sildenafil Citrate; Vascular Remodeling | 2020 |
Inhaled combination of sildenafil and rosiglitazone improves pulmonary hemodynamics, cardiac function, and arterial remodeling.
Currently, dual- or triple-drug combinations comprising different vasodilators are the mainstay for the treatment of pulmonary arterial hypertension (PAH). However, the patient outcome continues to be disappointing because the existing combination therapy cannot restrain progression of the disease. Previously, we have shown that when given as a monotherapy, long-acting inhaled formulations of sildenafil (a phosphodiesterase-5 inhibitor) and rosiglitazone (a peroxisome proliferator receptor-γ agonist) ameliorate PAH in rats. Thus, with a goal to develop a new combination therapy, we prepared and characterized poly(lactic-co-glycolic acid) (PLGA)-based long-acting inhalable particles of sildenafil and rosiglitazone. We then assessed the efficacy of the combinations of sildenafil and rosiglitazone, given in plain forms or as PLGA particles, in reducing mean pulmonary arterial pressure (mPAP) and improving pulmonary arterial remodeling and right ventricular hypertrophy (RVH) in Sugen 5416 plus hypoxia-induced PAH rats. After intratracheal administration of the formulations, we catheterized the rats and measured mPAP, cardiac output, total pulmonary resistance, and RVH. We also conducted morphometric studies using lung tissue samples and assessed the degree of muscularization, the arterial medial wall thickening, and the extent of collagen deposition. Compared with the plain drugs, given via the pulmonary or oral route as a single or dual combination, PLGA particles of the drugs, although given at a longer dosing interval compared with the plain drugs, caused more pronounced reduction in mPAP without affecting mean systemic pressure, improved cardiac function, slowed down right heart remodeling, and reduced arterial muscularization. Overall, PLGA particles of sildenafil and rosiglitazone, given as an inhaled combination, could be a viable alternative to currently available vasodilator-based combination therapy for PAH. Topics: Administration, Inhalation; Animals; Drug Therapy, Combination; Heart Function Tests; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Rosiglitazone; Sildenafil Citrate; Vascular Remodeling | 2019 |
Aberrant cGMP signaling persists during recovery in mice with oxygen-induced pulmonary hypertension.
Bronchopulmonary dysplasia (BPD), a common complication of preterm birth, is associated with pulmonary hypertension (PH) in 25% of infants with moderate to severe BPD. Neonatal mice exposed to hyperoxia for 14d develop lung disease similar to BPD, with evidence of associated PH. The cyclic guanosine monophosphate (cGMP) signaling pathway has not been well studied in BPD-associated PH. In addition, there is little data about the natural history of hyperoxia-induced PH in mice or the utility of phosphodiesterase-5 (PDE5) inhibition in established disease. C57BL/6 mice were placed in room air or 75% O2 within 24h of birth for 14d, followed by recovery in room air for an additional 7 days (21d). Additional pups were treated with either vehicle or sildenafil for 7d during room air recovery. Mean alveolar area, pulmonary artery (PA) medial wall thickness (MWT), RVH, and vessel density were evaluated at 21d. PA protein from 21d animals was analyzed for soluble guanylate cyclase (sGC) activity, PDE5 activity, and cGMP levels. Neonatal hyperoxia exposure results in persistent alveolar simplification, RVH, decreased vessel density, increased MWT, and disrupted cGMP signaling despite a period of room air recovery. Delayed treatment with sildenafil during room air recovery is associated with improved RVH and decreased PA PDE5 activity, but does not have significant effects on alveolar simplification, PA remodeling, or vessel density. These data are consistent with clinical studies suggesting inconsistent effects of sildenafil treatment in infants with BPD-associated PH. Topics: Animals; Animals, Newborn; Bronchopulmonary Dysplasia; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Disease Models, Animal; Guanylate Cyclase; Hyperoxia; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Lung; Mice; Mice, Inbred C57BL; Oxygen; Phosphodiesterase 5 Inhibitors; Pulmonary Alveoli; Pulmonary Artery; Signal Transduction; Sildenafil Citrate; Vascular Remodeling | 2017 |
Beneficial effects of aqueous extract of stem bark of Terminalia arjuna (Roxb.), An ayurvedic drug in experimental pulmonary hypertension.
The stem bark of Terminalia arjuna (Roxb.) is widely used in Ayurveda in various cardiovascular diseases. Many animal and clinical studies have validated its anti-ischemic, antihypertensive, antihypertrophic and antioxidant effects. Pulmonary hypertension (PH) is a fatal disease which causes right ventricular hypertrophy and right heart failure. Pulmonary vascular smooth muscle hypertrophy and increased oxidative stress are major pathological features of PH. As available limited therapeutic options fail to reduce the mortality associated with PH, alternative areas of therapy are worth exploring for potential drugs, which might be beneficial in PH.. The effect of a standardised aqueous extract of the stem bark of Terminalia arjuna (Roxb.) in preventing monocrotaline (MCT)-induced PH in rat was investigated.. The study was approved by Institutional Animal Ethics Committe. Male Wistar rats (150-200g) were randomly distributed into five groups; Control, MCT (50mg/kg subcutaneously once), sildenafil (175µg/kg/day three days after MCT for 25 days), and Arjuna extract (TA125 and TA250 mg/kg/day orally after MCT for 25 days). PH was confirmed by right ventricular weight to left ventricular plus septum weight (Fulton index), right ventricular systolic pressure (RVSP), echocardiography, percentage medial wall thickness of pulmonary arteries (%MWT). Oxidative stress in lung was assessed by super oxide dismutase (SOD), catalase, reduced glutathione (GSH) and thiobarbituric acid reactive substance (TBARS). The protein expressions of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX-1) in lung and gene expression of Bcl2 and Bax in heart were analyzed by Western blot and RT PCR respectively.. MCT caused right ventricular hypertrophy (0.58±0.05 vs 0.31±0.05; P<0.001 vs. control) and increase in RVSP (33.5±1.5 vs 22.3±4.7mm of Hg; P<0.001). Both sildenafil and Arjuna prevented hypertrophy and RVSP. Pulmonary artery acceleration time to ejection time ratio in echocardiography was decreased in PH rats (0.49±0.05 vs 0.32±0.06; P<0.001) which was prevented by sildenafil (0.44±0.06; P<0.01) and TA250 (0.45±0.06; P<0.01). % MWT of pulmonary arteries was increased in PH and was prevented by TA250. Increase in TBARS (132.7±18.4 vs 18.8±1.6nmol/mg protein; P<0.001) and decrease in SOD (58.4±14.1 vs 117.4±26.9U/mg protein; P<0.001) and catalase (0.30±0.05 vs 0.75±0.31U/mg protein; P<0.001) were observed in lung tissue of PH rats, which were prevented by sildenafil and both the doses of Arjuna extract. Protein expression of NOX1 was significantly increased in lung and gene expression of Bcl2/Bax ratio was significantly decreased in right ventricle in MCT-induced PH, both were significantly prevented by Arjuna and sildenafil.. Aqueous extract of Terminalia arjuna prevented MCT-induced pulmonary hypertension which may be attributed to its antioxidant as well as its effects on pulmonary arteriolar wall thickening. Topics: Animals; Antihypertensive Agents; Antioxidants; bcl-2-Associated X Protein; Catalase; Disease Models, Animal; Heart Ventricles; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Lung; Male; Medicine, Ayurvedic; NADH, NADPH Oxidoreductases; NADPH Oxidase 1; Plant Bark; Plant Extracts; Plant Stems; Proto-Oncogene Proteins c-bcl-2; Pulmonary Artery; Rats; Rats, Wistar; Sildenafil Citrate; Terminalia; Water | 2017 |
Rho kinase mediates right ventricular systolic dysfunction in rats with chronic neonatal pulmonary hypertension.
Chronic neonatal pulmonary hypertension frequently culminates in right ventricular (RV) failure and death. In juvenile rats, RV systolic dysfunction secondary to chronic hypoxia is rescued by systemic treatment with a Rho kinase (ROCK) inhibitor. To explore the relationship between ROCK inhibitor-mediated decreases in pulmonary vascular resistance and pressure, RV hypertrophy, and systolic dysfunction, we compared the effects of systemically administered to inhaled (pulmonary-selective) ROCK inhibitor on RV systolic function. Rat pups were exposed to air or hypoxia (13% O2) from Postnatal Days 1 to 21 and received rescue treatment with aerosolized fasudil (200 mM) for 15 minutes three times daily or intraperitoneal Y27632 (15 mg/kg twice daily) from Days 14 to 21. Chronic hypoxia differentially increased RhoA and ROCK activity in the right, but not left, cardiac ventricle. Inhaled ROCK inhibitor normalized pulmonary vascular resistance and caused regression of RV hypertrophy and pulmonary arterial wall remodeling but did not improve RV systolic dysfunction (decreased stroke volume and tricuspid annular plane systolic excursion). Systemic, but not inhaled, ROCK inhibitor normalized up-regulated ROCK and phosphodiesterase 5 activities in the right ventricle. Treatment with sildenafil (100 mg/kg/d intraperitoneally from Days 14 to 21) improved RV systolic function. Collectively, these data indicate that pressure unloading and regressed arterial and cardiac remodeling did not lead to recovery of systolic function while right ventricular ROCK activity remained increased. Right ventricle-specific up-regulation of RhoA/ROCK activity is critical to hypoxia-mediated systolic dysfunction, in part by regulating the activity of phosphodiesterase 5. Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Animals; Cyclic Nucleotide Phosphodiesterases, Type 5; Heart Ventricles; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Piperazines; Purines; Rats; rho-Associated Kinases; rhoA GTP-Binding Protein; Sildenafil Citrate; Sulfonamides; Vascular Resistance; Ventricular Dysfunction, Right | 2015 |
Effects of Single Drug and Combined Short-term Administration of Sildenafil, Pimobendan, and Nicorandil on Right Ventricular Function in Rats With Monocrotaline-induced Pulmonary Hypertension.
This study was designed to assess the progression of pulmonary arterial hypertension (PAH) and the effectiveness of therapy using recently investigated echocardiographic parameters. PAH is characterized by the progressive elevation of pulmonary artery pressure and right ventricular hypertrophy and dysfunction, which ultimately results in right-sided heart failure and death. Echocardiography results and invasive measurements of right and left ventricular systolic pressures were compared after 3-week administrations of sildenafil (S group), pimobendan (P group), nicorandil (N group), and their combinations (SP and SPN groups) in male rats with monocrotaline (MCT)-induced pulmonary hypertension (M group) and without this condition (C group). The groups that received pimobendan alone and in combinations (SP and SPN groups) showed improvement in their echocardiographic parameters of systolic function. A significant improvement of diastolic function was achieved in the SPN group. Invasive measurements showed the most significant decreases of right ventricular systolic pressure in the N and SPN groups, and the use of pimobendan resulted in a comparatively low risk of adverse hemodynamic effects (left ventricular systolic pressure). Although our results suggested the attenuation of PAH severity in all treatment groups, PAH could not be reversed. Topics: Animals; Disease Models, Animal; Drug Therapy, Combination; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Monocrotaline; Nicorandil; Phosphodiesterase 3 Inhibitors; Phosphodiesterase 5 Inhibitors; Pyridazines; Rats, Wistar; Recovery of Function; Severity of Illness Index; Sildenafil Citrate; Vasodilator Agents; Ventricular Dysfunction, Right; Ventricular Function, Right | 2015 |
Right ventricular cyclic nucleotide signaling is decreased in hyperoxia-induced pulmonary hypertension in neonatal mice.
Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 25-35% of premature infants with significant bronchopulmonary dysplasia (BPD), increasing morbidity and mortality. We sought to determine the role of phosphodiesterase 5 (PDE5) in the right ventricle (RV) and left ventricle (LV) in a hyperoxia-induced neonatal mouse model of PH and RVH. After birth, C57BL/6 mice were placed in room air (RA) or 75% O2 (CH) for 14 days to induce PH and RVH. Mice were euthanized at 14 days or recovered in RA for 14 days or 42 days prior to euthanasia at 28 or 56 days of age. Some pups received sildenafil or vehicle (3 mg·kg(-1)·dose(-1) sc) every other day from P0. RVH was assessed by Fulton's index [RV wt/(LV + septum) wt]. PDE5 protein expression was analyzed via Western blot, PDE5 activity was measured by commercially available assay, and cGMP was measured by enzyme-linked immunoassay. Hyperoxia induced RVH in mice after 14 days, and RVH did not resolve until 56 days of age. Hyperoxia increased PDE5 expression and activity in RV, but not LV + S, after 14 days. PDE5 expression normalized by 28 days of age, but PDE5 activity did not normalize until 56 days of age. Sildenafil given during hyperoxia prevented RVH, decreased RV PDE5 activity, and increased RV cGMP levels. Mice with cardiac-specific overexpression of PDE5 had increased RVH in RA. These findings suggest normal RV PDE5 function is disrupted by hyperoxia, and elevated PDE5 contributes to RVH and remodeling. Therefore, in addition to impacting the pulmonary vasculature, sildenafil also targets PDE5 in the neonatal mouse RV and decreases RVH. Topics: Animals; Animals, Newborn; Antihypertensive Agents; Cyclic AMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Disease Models, Animal; Down-Regulation; Heart Ventricles; Hyperoxia; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Mice, Inbred C57BL; Mice, Transgenic; Phosphodiesterase 5 Inhibitors; Piperazines; Purines; Second Messenger Systems; Sildenafil Citrate; Sulfonamides; Time Factors; Ventricular Function, Right; Ventricular Remodeling | 2015 |
Sildenafil in a cigarette smoke-induced model of COPD in the guinea-pig.
Sildenafil, a phosphodiesterase-5 inhibitor used to treat pulmonary hypertension, may have effects on pulmonary vessel structure and function. We evaluated the effects of sildenafil in a cigarette smoke (CS)-exposed model of chronic obstructive pulmonary disease (COPD).42 guinea-pigs were exposed to cigarette smoke or sham-exposed and treated with sildenafil or vehicle for 12 weeks, divided into four groups. Assessments included respiratory resistance, pulmonary artery pressure (PAP), right ventricle (RV) hypertrophy, endothelial function of the pulmonary artery and lung vessel and parenchymal morphometry.CS-exposed animals showed increased PAP, RV hypertrophy, raised respiratory resistance, airspace enlargement and intrapulmonary vessel remodelling. CS exposure also produced wall thickening, increased contractility and endothelial dysfunction in the main pulmonary artery. CS-exposed animals treated with sildenafil showed lower PAP and a trend to less RV hypertrophy than CS-exposed only animals. Furthermore, sildenafil preserved the intrapulmonary vessel density and attenuated the airspace enlargement induced by CS. No differences in gas exchange, respiratory resistance, endothelial function and vessel remodelling were observed.We conclude that in this experimental model of COPD, sildenafil prevents the development of pulmonary hypertension and contributes to preserve the parenchymal and vascular integrity, reinforcing the notion that the nitric oxide-cyclic guanosine monophosphate axis is perturbed by CS exposure. Topics: Animals; Disease Models, Animal; Guinea Pigs; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Phosphodiesterase 5 Inhibitors; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Sildenafil Citrate; Tobacco Smoke Pollution | 2015 |
Influence of imatinib at a low dose and sildenafil on pulmonary hypertension in rats.
The study investigates whether combination therapy of sildenafil with imatinib at a low dose (20 mg/kg) further ameliorates pulmonary hypertension (PH) in rats. The effects on right ventricle pressure (RVP), and right ventricle hypertrophy (RVH) were assessed in experimental monocrotaline (MCT)-induced pulmonary hypertension. Combined therapy reversed the MCT-induced increase in RVP more than each drug alone and decreased RV hypertrophy (RV/LV+ S ratio), significantly. Such additive effects toward improvement of PH may result from both pharmacodynamic and pharmacokinetic drug-drug interactions, however, further studies are required to assess its mechanistic background. Topics: Animals; Blood Pressure; Heart Rate; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Imatinib Mesylate; Male; Monocrotaline; Protein Kinase Inhibitors; Rats; Rats, Wistar; Sildenafil Citrate; Vasodilator Agents | 2015 |
Endothelial nitric oxide synthase-enhancing G-protein coupled receptor antagonist inhibits pulmonary artery hypertension by endothelin-1-dependent and endothelin-1-independent pathways in a monocrotaline model.
This study investigates whether endothelin-1 (ET-1) mediates monocrotaline (MCT)-induced pulmonary artery hypertension (PAH) and right ventricular hypertrophy (RVH), and if so, whether the G-protein coupled receptor antagonist KMUP-1 (7-{2-[4-(2-chlorobenzene)piperazinyl]ethyl}-1,3-dimethylxanthine) inhibits ET-1-mediated PA constriction and the aforementioned pathological changes. In a chronic rat model, intraperitoneal MCT (60 mg/kg) induced PAH and increased PA medial wall thickening and RV/left ventricle + septum weight ratio on Day 21 after MCT injection. Treatment with sublingual KMUP-1 (2.5 mg/kg/day) for 21 days prevented these changes and restored vascular endothelial nitric oxide synthase (eNOS) immunohistochemical staining of lung tissues. Western blotting analysis demonstrated that KMUP-1 enhanced eNOS, soluble guanylate cyclase, and protein kinase G levels, and reduced ET-1 expression and inactivated Rho kinase II (ROCKII) in MCT-treated lung tissue over long-term administration. In MCT-treated rats, KMUP-1 decreased plasma ET-1 on Day 21. KMUP-1 (3.6 mg/kg) maximally appeared at 0.25 hours in the plasma and declined to basal levels within 24 hours after sublingual administration. In isolated PA of MCT-treated rats, compared with control and pretreatment with l-NG-nitroarginine methyl ester (100 μM), KMUP-1 (0.1-100 μM) inhibited ET-1 (0.01 μM)-induced vasoconstriction. Endothelium-denuded PA sustained higher contractility in the presence of KMUP-1. In a 24-hour culture of smooth muscle cells (i.e., PA smooth muscle cells or PASMCs), KMUP-1 (0.1-10 μM) inhibited RhoA- and ET-1-induced RhoA activation. KMUP-1 prevented MCT-induced PAH, PA wall thickening, and RVH by enhancing eNOS and suppressing ET-1/ROCKII expression. In vitro, KMUP-1 inhibited ET-1-induced PA constriction and ET-1-dependent/independent RhoA activation of PASMCs. In summary, KMUP-1 attenuates ET-1-induced/ET-1-mediated PA constriction, and could thus aid in the treatment of PAH caused by MCT. Topics: Animals; Blood Pressure; Body Weight; Cyclic GMP-Dependent Protein Kinases; Disease Models, Animal; Endothelin-1; Guanylate Cyclase; Heart Rate; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; In Vitro Techniques; Male; Monocrotaline; Nitric Oxide Synthase Type III; Piperazines; Piperidines; Pulmonary Artery; Purines; Rats, Wistar; Receptors, Cytoplasmic and Nuclear; Receptors, G-Protein-Coupled; rho-Associated Kinases; rhoA GTP-Binding Protein; Signal Transduction; Sildenafil Citrate; Soluble Guanylyl Cyclase; Sulfonamides; Vasoconstriction; Xanthines | 2014 |
Sildenafil treatment in established right ventricular dysfunction improves diastolic function and attenuates interstitial fibrosis independent from afterload.
Right ventricular (RV) function is an important determinant of prognosis in congenital heart diseases, pulmonary hypertension, and heart failure. Preventive sildenafil treatment has been shown to enhance systolic RV function and improve exercise capacity in a model of fixed RV pressure load. However, it is unknown whether sildenafil has beneficial effects when treatment is started in established RV dysfunction, which is clinically more relevant. Our aim was to assess the effects of sildenafil treatment on RV function and fibrosis in a model of established RV dysfunction due to fixed afterload. Rats were subjected to pulmonary artery banding (PAB), which induced RV dysfunction after 4 wk, characterized by reduced exercise capacity, decreased tricuspid annular plane systolic excursion, and RV dilatation. From week 4 onward, 50% of rats were treated with sildenafil (100 mg·kg(-1)·day(-1), n = 9; PAB-SIL group) or vehicle (n = 9; PAB-VEH group). At 8 wk, exercise capacity was assessed using cage wheels, and RV function was assessed using invasive RV pressure-volume measurements under anesthesia. Sildenafil treatment, compared with vehicle, improved RV ejection fraction (44 ± 2% vs. 34 ± 2%, P < 0.05, PAB-SIL vs. PAB-VEH groups), reduced RV end-diastolic pressure (2.3 ± 0.5 vs. 5.1 ± 0.9 mmHg, P < 0.05), and RV dilatation (end-systolic volume: 468 ± 45 vs. 643 ± 71 μl, P = 0.05). Sildenafil treatment also attenuated RV fibrosis (30 ± 6 vs. 17 ± 3‰, P < 0.05) but did not affect end-systolic elastance, exercise capacity, or PKG or PKA activity. In conclusion, sildenafil improves RV diastolic function and attenuates interstitial fibrosis in rats with established RV dysfunction, independent from afterload. These results indicate that sildenafil treatment has therapeutic potential for established RV dysfunction. Topics: Animals; Cardiotonic Agents; Diastole; Disease Models, Animal; Exercise Tolerance; Fibrosis; Heart Ventricles; Hypertrophy, Right Ventricular; Male; Piperazines; Purines; Rats, Wistar; Recovery of Function; Sildenafil Citrate; Stroke Volume; Sulfones; Time Factors; Ventricular Dysfunction, Right; Ventricular Function, Right; Ventricular Pressure | 2014 |
Rosuvastatin, sildenafil and their combination in monocrotaline-induced pulmonary hypertension in rat.
There is considerable interest in the pleiotropic effects of statins and their potential role in the treatment of pulmonary hypertension. Previous experimental findings indicate that a combination of lipophilic statins with phosphodiesterase type-5 inhibitor, sildenafil, can offer preventive effects on rat monocrotaline-induced pulmonary hypertension. The present study is aimed to assess whether therapeutic regimen provides any benefits. Seven days after pulmonary hypertension induction, hydrophilic rosuvastatin and sildenafil were given for 14 days to male Wistar outbred rats. Right ventricular pressure, right ventricle mass and three biomarkers were evaluated after 21 days: brain natriuretic peptide, high-density lipoprotein cholesterol and vascular endothelial growth factor. The present study demonstrates that administration of hydrophilic statin with sildenafil results in reduction of pulmonary vascular remodeling and right ventricular pressure. The results of biochemical measurements may suggest that statins play a positive role in right ventricle function or the process of angiogenesis in pulmonary hypertension development. Topics: Animals; Antihypertensive Agents; Arterial Pressure; Biomarkers; Cholesterol, HDL; Disease Models, Animal; Drug Therapy, Combination; Fluorobenzenes; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Monocrotaline; Natriuretic Peptide, Brain; Phosphodiesterase 5 Inhibitors; Piperazines; Pulmonary Artery; Purines; Pyrimidines; Rats, Wistar; Rosuvastatin Calcium; Sildenafil Citrate; Sulfonamides; Time Factors; Vascular Endothelial Growth Factor A; Vascular Remodeling; Vasodilator Agents; Ventricular Function, Right; Ventricular Pressure | 2014 |
The effects of cyclic guanylate cyclase stimulation on right ventricular hypertrophy and failure alone and in combination with phosphodiesterase-5 inhibition.
We investigated if soluble guanylate cyclase stimulation either alone or in combination with phosphodiesterase-5 (PDE5) inhibition could prevent pressure overload-induced right ventricular (RV) hypertrophy and failure.. The soluble guanylate cyclase stimulator BAY 41-2272 (BAY, 10 mg · kg⁻¹ · d⁻¹) either alone or in combination (BAY + SIL) with a PDE5 inhibitor sildenafil (SIL, 100 mg · kg⁻¹ · d⁻¹) was examined for prevention of RV hypertrophy and failure in Wistar rats (n = 73) operated by pulmonary trunk banding.. All treatments failed to inhibit the development of RV hypertrophy and failure. In the BAY and BAY + SIL groups, there was an increased mortality. Mean arterial blood pressure was lowered and cardiac output increased in the BAY + SIL group. Systolic RV pressure was increased in the BAY and BAY + SIL groups possibly because of an inotropic response and/or increased venous return.. Stimulation of soluble guanylate cyclase by BAY 41-2272 alone or in combination with sildenafil failed to prevent the development of RV hypertrophy and failure in rats subjected to pulmonary trunk banding. An increased mortality was observed in animals treated by BAY 41-2272 alone and in combination with sildenafil. Topics: Animals; Blood Pressure; Cardiac Output; Cyclic GMP; Disease Models, Animal; Disease Progression; Enzyme Activators; Guanylate Cyclase; Heart Failure; Heart Ventricles; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Phosphodiesterase 5 Inhibitors; Piperazines; Purines; Pyrazoles; Pyridines; Random Allocation; Rats; Rats, Wistar; Receptors, Cytoplasmic and Nuclear; Sildenafil Citrate; Soluble Guanylyl Cyclase; Sulfones; Survival Analysis | 2013 |
Sildenafil prevents and reverses transverse-tubule remodeling and Ca(2+) handling dysfunction in right ventricle failure induced by pulmonary artery hypertension.
Right ventricular (RV) failure (RVF) is the main cause of death in patients with pulmonary artery hypertension (PAH). Sildenafil, a phosphodiesterase type 5 inhibitor, was approved recently for treatment of PAH patients. However, the mechanisms underlying RV contractile malfunction and the benefits of sildenafil on RV function are not well understood. We aimed to investigate the following: (1) the ultrastructural and excitation-contraction coupling alterations underlying PAH-induced RVF; (2) whether the ultrastructural changes are reversible; and (3) the mechanisms underlying the therapeutic benefits of sildenafil in PAH-RVF. We used a single injection of monocrotaline in Wistar rats to induce pulmonary vascular proliferation, which led to PAH and RVF. RV myocytes displayed severe transverse (T)-tubule loss and disorganization, as well as blunted and dys-synchronous sarcoplasmic reticulum Ca(2+) release. Sildenafil prevented and reversed the monocrotaline-induced PAH and LV filling impairment. Early intervention with sildenafil prevented RV hypertrophy and the development of RVF, T-tubule remodeling, and Ca(2+) handling dysfunction. Although late treatment with sildenafil did not reverse RV hypertrophy in animals with established RVF, RV systolic function was improved. Furthermore, late intervention partially reversed both the impairment of myocyte T-tubule integrity and Ca(2+) handling protein and sarcoplasmic reticulum Ca(2+) release function in monocrotaline-treated rats. In conclusion, PAH-induced increase in RV afterload causes severe T-tubule remodeling and Ca(2+) handling dysfunction in RV myocytes, leading to RV contractile failure. Sildenafil prevents and partially reverses ultrastructural, molecular, and functional remodeling of failing RV myocytes. Reversal of pathological T-tubule remodeling, although incomplete, is achievable without the regression of RV hypertrophy. Topics: Animals; Calcium; Disease Models, Animal; Excitation Contraction Coupling; Heart Failure; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Microscopy, Confocal; Monocrotaline; Myocardial Contraction; Myocytes, Cardiac; Phosphodiesterase 5 Inhibitors; Piperazines; Purines; Rats; Rats, Wistar; Sildenafil Citrate; Sulfones; Treatment Outcome; Ventricular Dysfunction, Right; Ventricular Remodeling | 2012 |
The soluble guanylate cyclase stimulator riociguat ameliorates pulmonary hypertension induced by hypoxia and SU5416 in rats.
The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signal-transduction pathway is impaired in many cardiovascular diseases, including pulmonary arterial hypertension (PAH). Riociguat (BAY 63-2521) is a stimulator of sGC that works both in synergy with and independently of NO to increase levels of cGMP. The aims of this study were to investigate the role of NO-sGC-cGMP signaling in a model of severe PAH and to evaluate the effects of sGC stimulation by riociguat and PDE5 inhibition by sildenafil on pulmonary hemodynamics and vascular remodeling in severe experimental PAH.. Severe angioproliferative PAH was induced in rats by combined exposure to the vascular endothelial growth factor receptor antagonist SU5416 and hypoxia (SUHx). Twenty-one days thereafter rats were randomized to receive either riociguat (10 mg/kg/day), sildenafil (50 mg/kg/day) or vehicle by oral gavage, for 14 days until the day of the terminal hemodynamic measurements. Administration of riociguat or sildenafil significantly decreased right ventricular systolic pressure (RVSP). Riociguat significantly decreased RV hypertrophy (RVH) (0.55 ± 0.02, p<0.05), increased cardiac output (60.8 ± .8 mL/minute, p<0.05) and decreased total pulmonary resistance (4.03 ± 0.3 mmHg min(-1) ml(-1) 100 g BW, p<0.05), compared with sildenafil and vehicle. Both compounds significantly decreased the RV collagen content and improved RV function, but the effects of riociguat on tricuspid annular plane systolic excursion and RV myocardial performance were significantly better than those of sildenafil (p<0.05). The proportion of occluded arteries was significantly lower in animals receiving riociguat than in those receiving vehicle (p<0.05); furthermore, the neointima/media ratio was significantly lower in those receiving riociguat than in those receiving sildenafil or vehicle (p<0.05).. Riociguat and sildenafil significantly reduced RVSP and RVH, and improved RV function compared with vehicle. Riociguat had a greater effect on hemodynamics and RVH than sildenafil. Topics: Animals; Apoptosis; Blood Pressure; Blotting, Western; Caspase 3; Cell Proliferation; Cyclic GMP; Guanylate Cyclase; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Immunohistochemistry; Indoles; Lung; Male; Nitric Oxide Synthase Type III; Phosphodiesterase 5 Inhibitors; Piperazines; Purines; Pyrazoles; Pyrimidines; Pyrroles; Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Sildenafil Citrate; Soluble Guanylyl Cyclase; Sulfones; Time Factors; Treatment Outcome | 2012 |
Sildenafil preserves lung endothelial function and prevents pulmonary vascular remodeling in a rat model of diastolic heart failure.
Pulmonary hypertension as a frequent complication of left heart disease (PH-LHD) is characterized by lung endothelial dysfunction and vascular remodeling. Although PH-LHD contributes to morbidity and mortality in heart failure, established therapies for PH-LHD are lacking. We tested the effect of chronic sildenafil treatment in an experimental model of PH-LHD.. In Sprague-Dawley rats, PH-LHD was induced by supracoronary aortic banding. Oral sildenafil treatment (60 mg/kg daily) was initiated after 7 days, and lung endothelial function (n=5), vascular remodeling, and right ventricular function (n=11 each) were analyzed 9 weeks after banding. As compared with sham-operated controls, aortic banding induced pulmonary hypertension and lung endothelial dysfunction evident as lack of endothelial nitric oxide production and endothelium-dependent vasodilation. These changes were associated with an increased pulmonary vascular resistance, medial thickening, and biventricular cardiac hypertrophy. Sildenafil treatment largely attenuated these pathological changes and was not associated with detectable adverse effects pertinent to lung vascular barrier function, edema formation, or systemic hemodynamics.. Our data identify sildenafil as a promising therapy for PH-LHD. In light of its documented protective effects at the myocardial level in heart failure, sildenafil presents a particularly attractive strategy in that it simultaneously targets cardiac remodeling and secondary PH-LHD. Topics: Administration, Oral; Animals; Antihypertensive Agents; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Disease Models, Animal; Endothelium, Vascular; Heart Failure, Diastolic; Hypertension, Pulmonary; Hypertrophy, Left Ventricular; Hypertrophy, Right Ventricular; Lung; Male; Nitric Oxide; Phosphodiesterase 5 Inhibitors; Piperazines; Pulmonary Artery; Purines; Rats; Rats, Sprague-Dawley; Sildenafil Citrate; Sulfones; Time Factors; Vascular Resistance; Vasodilation; Ventricular Function, Left; Ventricular Function, Right | 2011 |
Sildenafil inhibits chronically hypoxic upregulation of canonical transient receptor potential expression in rat pulmonary arterial smooth muscle.
In pulmonary arterial smooth muscle cells (PASMCs), Ca2+ influx through store-operated Ca2+ channels thought to be composed of canonical transient receptor potential (TRPC) proteins is an important determinant of intracellular free calcium concentration ([Ca2+](i)) and pulmonary vascular tone. Sildenafil, a type V phosphodiesterase inhibitor that increases cellular cGMP, is recently identified as a promising agent for treatment of pulmonary hypertension. We previously demonstrated that chronic hypoxia elevated basal [Ca2+](i) in PASMCs due in large part to enhanced store-operated Ca2+ entry (SOCE); moreover, ex vivo exposure to prolonged hypoxia (4% O2 for 60 h) upregulated TRPC1 and TRPC6 expression in PASMCs. We examined the effect of sildenafil on basal [Ca2+](i), SOCE, and the expression of TRPC in PASMCs under prolonged hypoxia exposure. We also examined the effect of sildenafil on TRPC1 and TRPC6 expression in pulmonary arterial smooth muscle (PA) from rats that developed chronically hypoxic pulmonary hypertension (CHPH). Compared with vehicle control, treatment with sildenafil (300 nM) inhibited prolonged hypoxia induced increases of 1) basal [Ca2+](i), 2) SOCE, and 3) mRNA and protein expression of TRPC in PASMCs. Moreover, sildenafil (50 mg . kg(-1) . day(-1)) inhibited mRNA and protein expression of TRPC1 and TRPC6 in PA from chronically hypoxic (10% O2 for 21 days) rats, which was associated with decreased right ventricular pressure and right ventricular hypertrophy. Furthermore, we found, in PASMCs exposed to prolonged hypoxia, that knockdown of TRPC1 or TRPC6 by their specific small interference RNA attenuated the hypoxic increases of SOCE and basal [Ca2+]i, suggesting a cause and effect link between increases of TRPC1 and TRPC6 expression and the hypoxic increases of SOCE and basal [Ca2+]i. These results suggest that sildenafil may alter basal [Ca2+](i) in PASMCs by decreasing SOCE through downregulation of TRPC1 and TRPC6 expression, thereby contributing to decreased vascular tone of pulmonary arteries during the development of CHPH. Topics: Animals; Blood Pressure; Calcium; Cell Hypoxia; Gene Expression Regulation; Hypertrophy, Right Ventricular; Male; Muscle, Smooth, Vascular; Piperazines; Pulmonary Artery; Purines; Rats; Rats, Wistar; RNA, Messenger; RNA, Small Interfering; Sildenafil Citrate; Sulfones; TRPC Cation Channels; Up-Regulation; Vasodilator Agents; Ventricular Function, Right | 2010 |
The extracellular signal-regulated kinase is involved in the effects of sildenafil on pulmonary vascular remodeling.
Pulmonary hypertension is a group of diseases comprising vascular constriction and obstructive changes of the pulmonary vasculature. Phosphodiesterase type 5 inhibitors, for example, sildenafil, can alleviate vascular remodeling in the monocrotaline pulmonary hypertension model in rats. We investigate the mechanisms of sildenafil on the pulmonary vascular remodeling of pulmonary hypertension induced by monocrotaline (MCT) in rats. Thirty Sprague-Dawley rats (weighing 200-220 g) were administered with MCT abdominal cavity injection or equivalent volume of normal saline (NS) (which were treated as C group n = 10) to induce pulmonary hypertension model. Fourteen days later, 20 MCT treated rats were randomly fed with sildenafil (25mg/kg/day) or placebo as S, P group (10 rats for each group), respectively. Another 6 weeks later, mean pulmonary artery pressure (mPAP), index of right ventricular hypertrophy (RV/LV+S) of all animals were measured under general anesthesia. Pulmonary tissue was collected to investigate pathological features of pulmonary arteries and to measure protein expression of ERK(1)/ERK(2) and MKP1. After 6 weeks, there were significant elevated mPAP and RV/LV+S in both P and S groups. The ratio of wall thickness to vessel diameter in pulmonary arteries with diameters <200 microm were increased in both P and S groups. But the ratio of wall thickness to vessel diameter was smaller in S group than that in P group. The phosphorylation level of ERK(1)/ERK(2) were elevated in both P and S groups, but the level of phosphorlation ERK(1)/ERK(2) were lower in S group than that in P group. Intriguingly, the expression level of MKP1 was significantly increased in both S and P groups, while it was higher in S group than that in P group. The sildenafil can decrease mPAP and inhibit the progress of pulmonary vascular remodeling in pulmonary hypertension rats. The ERK-MAP kinase signaling pathway might play a role during this process. Topics: Actins; Animals; Antihypertensive Agents; Blood Pressure; Disease Models, Animal; Dual Specificity Phosphatase 1; Fluorescent Antibody Technique; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Monocrotaline; Phosphorylation; Piperazines; Pulmonary Artery; Purines; Rats; Rats, Sprague-Dawley; Signal Transduction; Sildenafil Citrate; Sulfones; Vasodilator Agents | 2010 |
Fasudil reduces monocrotaline-induced pulmonary arterial hypertension: comparison with bosentan and sildenafil.
Pulmonary arterial hypertension (PAH) still cannot be cured, warranting the search for novel treatments. Fasudil (a Rho kinase inhibitor) was compared with bosentan (an endothelin receptor blocker) and sildenafil (a phosphodiesterase 5 inhibitor), with emphasis on right ventricular (RV) function, in a reversal rat model of monocrotaline (MCT)-induced PAH. In addition, the effects of combining bosentan or sildenafil with fasudil were studied. MCT (40 mg·kg body weight(-1)) induced clear PAH in male Wistar rats (n = 9). After 28 days, echocardiography, RV catheterisation and histochemistry showed that cardiac frequency, stroke volume and RV contractility had deteriorated, accompanied by RV dilatation and hypertrophy, and marked pulmonary arterial wall thickening. Mean pulmonary arterial pressure and pulmonary vascular resistance increased significantly compared to healthy rats (n = 9). After 14 days, MCT-treated rats received a 14-day oral treatment with bosentan, sildenafil, fasudil or a combination of fasudil with either bosentan or sildenafil (all n = 9). All treatments preserved cardiac frequency, stroke volume and RV contractility, and reduced pulmonary vascular resistance and RV dilatation. Fasudil lowered RV systolic pressure and mean pulmonary arterial pressure significantly, by reducing pulmonary arterial remodelling, which reduced RV hypertrophy. Combining bosentan or sildenafil with fasudil had no synergistic effect. Fasudil significantly improved PAH, to a greater degree than did bosentan and sildenafil. Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Administration, Oral; Animals; Antihypertensive Agents; Blood Pressure; Bosentan; Familial Primary Pulmonary Hypertension; Heart Ventricles; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Monocrotaline; Piperazines; Pulmonary Artery; Purines; Rats; Sildenafil Citrate; Sulfonamides; Sulfones; Vasodilator Agents | 2010 |
BAY 41-2272 inhibits the development of chronic hypoxic pulmonary hypertension in rats.
The present study investigated whether BAY 41-2272(5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine), a novel pyrazolopyridine that activates guanylyl cyclase and sensitizes the enzyme towards nitric oxide (NO), inhibits the development of pulmonary hypertension. BAY 41-2272 (1 or 10 mg/kg/day) was administered intraperitoneally, and sildenafil (25 mg/kg/day), an inhibitor phosphodiesterase type 5, was given in the drinking water to rats kept under chronic hypobaric hypoxia for two weeks. Right ventricular systolic pressure and hypertrophy, degree of muscularization and relaxation of pulmonary arteries were measured, and immunoblotting was performed. Chronic hypoxia increased right ventricular systolic pressure and expression of soluble guanylyl cyclase and phosphorylated vasodilator-stimulated phosphoprotein (VASP-P(ser239)). BAY 41-2272 prevented hypoxia-induced increase in right ventricular systolic pressure and right ventricular hypertrophy to the same extent as sildenafil. Only sildenafil significantly decreased hypoxia-induced muscularization of pulmonary arteries. Expressed relative to soluble guanylyl cyclase expression, VASP-P(ser239) was increased in lungs from rats treated with BAY 41-2272. Acutely BAY 41-2272 caused pulmonary as well as systemic vasodilatation. In the chronic setting systemic blood pressure was not different to baseline at trough after intraperitoneally administered BAY 41-2272. BAY 41-2272 vasorelaxation in isolated pulmonary resistance arteries was inhibited by an inhibitor of guanylyl cyclase, ODQ (1H-[1,2,4] oxadiazolo[4,3-a]quinoxaline-1-one), and of Na(+)-K(+)-ATPase, ouabain. In conclusion, in an adult rat model of chronic hypoxic pulmonary hypertension, BAY 41-2272 to a similar degree as sildenafil prevents pulmonary hypertension. Thus, BAY 41-2272 may provide a novel therapeutic compound for treating chronic hypoxic pulmonary hypertension. Topics: Animals; Cell Adhesion Molecules; Guanylate Cyclase; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Male; Microfilament Proteins; Phosphoproteins; Piperazines; Pulmonary Artery; Purines; Pyrazoles; Pyridines; Rats; Rats, Wistar; Sildenafil Citrate; Sulfones; Time Factors; Vasodilation; Vasodilator Agents | 2010 |
Chronic inhibition of phosphodiesterase 5 does not prevent pressure-overload-induced right-ventricular remodelling.
Inhibition of phosphodiesterase 5 (PDE5) decreases pulmonary pressure and improves symptoms in patients with pulmonary arterial hypertension. It is unclear however, whether inhibition of PDE5 can prevent myocardial remodelling during right-ventricular pressure overload.. Right-ventricular pressure overload was produced in male rats in a pulmonary hypertension model (monocrotaline 60 mg/kg s.c.) or by surgical pulmonary artery banding. PDE5 inhibition using oral sildenafil (50 mg/kg/day in drinking water) or placebo was initiated 14 days after monocrotaline treatment and continued for 14 days until final examination. In the pulmonary artery banding groups, rats were treated with sildenafil (50 mg/kg/day) or placebo for 21 days following surgical pulmonary artery banding. At the final experiments, right-ventricular haemodynamics were measured and remodelling was analysed using histological, biochemical, and gene expression markers. Both monocrotaline and pulmonary artery banding increased right-ventricular systolic pressure to approximately 80 mmHg. In parallel, both interventions induced markers of hypertrophy (upregulation of natriuretic peptides, increase in myocyte diameter) and fibrosis (upregulation of collagen types 1A2 and 3A1) as well as mRNA expression of the tissue inhibitor of matrix metalloproteases 1 and osteopontin in the right ventricle. In monocrotaline model, sildenafil decreased pulmonary pressure, reduced right-ventricular hypertrophy, and prevented fibrosis marker gene upregulation. After pulmonary artery banding, in contrast, sildenafil increased markers of myocardial remodelling and right-ventricular myocyte diameter.. Sildenafil prevents myocardial remodelling in pulmonary hypertension through an indirect action via right-ventricular unloading. Topics: Administration, Oral; Animals; Blood Pressure; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Disease Models, Animal; Fibrillar Collagens; Fibrosis; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Monocrotaline; Myocardium; Natriuretic Peptides; Osteopontin; Phosphodiesterase 5 Inhibitors; Phosphodiesterase Inhibitors; Piperazines; Pulmonary Artery; Purines; Rats; Rats, Sprague-Dawley; Rats, Wistar; RNA, Messenger; Sildenafil Citrate; Stroke Volume; Sulfones; Time Factors; Tissue Inhibitor of Metalloproteinase-1; Ventricular Pressure; Ventricular Remodeling | 2009 |
Cardiac anti-remodelling effects of phosphodiesterase type 5 inhibitors: afterload-(in)dependent?
Topics: Administration, Oral; Animals; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Extracellular Matrix Proteins; Fibrosis; Hemodynamics; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Myocardium; Phosphodiesterase 5 Inhibitors; Phosphodiesterase Inhibitors; Piperazines; Purines; Rats; Sildenafil Citrate; Sulfones; Ventricular Remodeling | 2009 |
Mitochondrial nitric oxide metabolism during rat heart adaptation to high altitude: effect of sildenafil, L-NAME, and L-arginine treatments.
Rats submitted to high altitude (Cerro de Pasco, Perú, 4,340 m, Po(2) = 12.2 kPa) for up to 84 days showed a physiological adaptive response with decreased body weight gain (15%), increased right ventricle weight (100%), and increased hematocrit (40%) compared with sea level animals. These classical parameters of adaptation to high altitude were accompanied by an increase in heart mitochondrial enzymes: complexes I-III activity by 34% and mitochondrial nitric oxide synthase (mtNOS) activity and expression by >75%. The hyperbolic increase for mtNOS activity during adaptation to high altitude was similar to the observed pattern for hematocrit. Hematocrit and mtNOS activity mean values correlated linearly (r(2) = 0.75, P Topics: Adaptation, Physiological; Altitude; Animals; Arginine; Body Weight; Electron Transport Complex I; Electron Transport Complex II; Electron Transport Complex III; Electron Transport Complex IV; Enzyme Inhibitors; Heart; Hematocrit; Hypertrophy, Right Ventricular; Male; Mitochondria; Myocardium; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Organ Size; Phosphodiesterase Inhibitors; Piperazines; Purines; Rats; Rats, Sprague-Dawley; Sildenafil Citrate; Sulfones | 2009 |
Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury.
Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD), a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome.. Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50-150 mg/kg body weight/day; injected subcutaneously) and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue.. Prophylactic treatment with an optimal dose of sildenafil (2 x 50 mg/kg/day) significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH).. Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary inflammatory response, fibrin deposition and RVH, and stimulates alveolarization. Initiation of sildenafil treatment after hyperoxic lung injury and continued during room air recovery improves alveolarization and restores pulmonary angiogenesis and RVH in experimental BPD. Topics: Animals; Animals, Newborn; Disease Models, Animal; Fibrin; Humans; Hyperoxia; Hypertrophy, Right Ventricular; Lung Injury; Phosphodiesterase Inhibitors; Piperazines; Pneumonia; Purines; Rats; Rats, Wistar; Sildenafil Citrate; Sulfones; Survival Analysis; Survival Rate; Treatment Outcome | 2009 |
Simvastatin and sildenafil combine to attenuate pulmonary hypertension.
Statins have been proposed to be a potential treatment for pulmonary arterial hypertension. If introduced into clinical practice, the statin would have to be used in conjunction with established therapy. We investigated the effects of combining simvastatin with a phosphodiesterase type-5 inhibitor, sildenafil, in the rat model of hypoxia-induced pulmonary hypertension. Rats were allocated to either: 1) a prevention protocol, to receive simvastatin 20 mg x kg(-1) x day(-1) by intraperitoneal injection or sildenafil 75 mg x kg(-1) x day(-1) orally or the combination (or vehicle) for 2 weeks beginning at the start of exposure to hypoxia (10% inspired oxygen); or 2) a treatment protocol, where the same agents were administered in the last 2 weeks of a 4-week period of hypoxia. In both protocols, the combination of sildenafil and simvastatin lowered pulmonary artery pressure and produced a significantly greater reduction in right ventricular hypertrophy and pulmonary vascular muscularisation than either drug alone. Moreover, the combination augmented significantly endothelial nitric oxide synthase expression and cGMP levels in the lung and right ventricle above that produced by either drug independently and resulted in greater inhibition of RhoA activity. These data suggest that simvastatin can be usefully combined with sildenafil in the treatment of pulmonary arterial hypertension to achieve greater therapeutic benefit. Topics: Animals; Cyclic GMP; Disease Models, Animal; Drug Therapy, Combination; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Male; Nitric Oxide Synthase Type III; Phosphodiesterase Inhibitors; Piperazines; Pulmonary Circulation; Purines; Rats; Rats, Sprague-Dawley; rhoA GTP-Binding Protein; Signal Transduction; Sildenafil Citrate; Simvastatin; Sulfones | 2009 |
Effects of phosphodiesterase-5 inhibition by sildenafil in the pressure overloaded right heart.
Sustained pressure overload of the right ventricle (RV) causes RV hypertrophy and failure. Cyclic-GMP has previously been shown to modulate left ventricular hypertrophy.. To evaluate the effects of sildenafil, a phosphodiesterase-5 (PDE5) inhibitor elevating c-GMP, on myocardial hypertrophy and function in rats with RV hypertrophy.. Rats were pulmonary trunk banded (PTB) and randomized to receive sildenafil (SIL) or vehicle (VEC) for three (n=14) and nine weeks (n=18). In addition, rats with established RV hypertrophy were randomized to SIL or VEC (n=17) three weeks after PTB. Right ventricular function was evaluated by echocardiography and RV hypertrophy by histology and RV weight.. Sildenafil failed to inhibit the development of RV hypertrophy when given for both 3 and 9 weeks. On the contrary, sildenafil increased RV hypertrophy after 3 weeks (RV/bodyweight: SIL 0.099+/-0.016 vs. VEC 0.081+/-0.011; p<0.05) and total heart weight after 9 weeks (SIL 1.05+/-0.10 vs. VEC 0.93+/-0.08 g; p<0.05). Sildenafil also failed to reverse established RV hypertrophy, but significantly improved RV myocardial function as measured by Tricuspid Annular Plane Systolic Excursion (TAPSE: SIL 1.85+/-0.027 vs. VEC 1.39+/-0.037 mm; p<0.05).. PDE5 inhibition by sildenafil failed to prevent or reverse RV hypertrophy in rats operated by pulmonary trunk banding. It actually increased RV hypertrophy and improved RV contractile function when given to rats with established RV hypertrophy. Topics: Animals; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Echocardiography; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Phosphodiesterase 5 Inhibitors; Phosphodiesterase Inhibitors; Piperazines; Purines; Rats; Rats, Wistar; Sildenafil Citrate; Sulfones; Ventricular Function, Right | 2008 |
Oral sildenafil prevents and reverses the development of pulmonary hypertension in monocrotaline-treated rats.
The endothelin system plays an important role in the development of pulmonary hypertension. Several studies have suggested that interfering with the function of the endothelin system will be helpful in pulmonary hypertension treatment. In the present study, we investigated the preventive and therapeutic effects of sildenafil on pulmonary hypertension in monocrotaline-treated rats. In the preventive study, the level of mean pulmonary arterial pressure, right ventricular divide, left ventricular and septum, small pulmonary arterial morphologic and elastic fiber changes were highly improved in the treated group (P<0.05). The expressions of endothelin-1 A type receptors on small pulmonary arterial hypertension were significantly reduced in the sildenafil-treated group (P<0.05). The ET-1 level in plasma was increased in the sildenafil-treated group, but did not reach significance. Emphysema, interstitial pneumonia were significantly improved in the sildenafil-treated group. The same findings were also observed in the therapeutic study. The present results suggest that sildenafil can prevent and reverse the development of pulmonary hypertension in monocrotaline-treated rats by improving the function of endothelin system in pulmonary arteries. Topics: Administration, Oral; Animals; Antihypertensive Agents; Blood Pressure; Disease Models, Animal; Endothelin-1; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Lung; Lung Diseases, Interstitial; Male; Monocrotaline; Piperazines; Pulmonary Artery; Pulmonary Emphysema; Purines; Rats; Rats, Sprague-Dawley; Receptor, Endothelin A; Sildenafil Citrate; Sulfones; Time Factors; Vasodilator Agents | 2007 |
Right-sided cardiac involvement in osteogenesis imperfecta.
Skeletal manifestations are the hallmark of the osteogenesis imperfecta group of disorders. Extraskeletal involvement may, however, contribute significantly to morbidity. Structural cardiovascular anomalies reported in osteogenesis imperfecta include aortic root dilatation and aortic and mitral valve dysfunction. Herein is reported the first case of involvement of the right side of the heart in osteogenesis imperfecta. Topics: Endothelium-Dependent Relaxing Factors; Female; Heart Defects, Congenital; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Infant, Newborn; Length of Stay; Nitric Oxide; Osteogenesis Imperfecta; Patient Discharge; Piperazines; Purines; Radiography, Thoracic; Sildenafil Citrate; Sulfones; Treatment Outcome; Tricuspid Valve; Ultrasonography; Vasodilator Agents | 2006 |
Beneficial effects of phosphodiesterase 5 inhibition in pulmonary hypertension are influenced by natriuretic Peptide activity.
Phosphodiesterase type 5 (PDE5) inhibitors (eg, sildenafil) are a novel, orally active approach to the treatment of pulmonary arterial hypertension. The role of natriuretic peptides in the response to sildenafil was examined in mice lacking NPR-A, a guanylyl cyclase-linked natriuretic peptide receptor, in which pulmonary hypertension was induced by hypoxia.. Mice homozygous for NPR-A (NPR-A+/+) and null mutants (NPR-A-/-) were studied. Sildenafil inhibited the pressor response to acute hypoxia in the isolated perfused lungs of both genotypes. This effect was greater in the presence of atrial natriuretic peptide in the perfusate in NPR-A+/+ mice but not NPR-A-/- animals. In vivo, NPR-A mutants had higher basal right ventricular (RV) systolic pressures (RVSPs) than did NPR-A+/+ mice, and this was not affected by 3 weeks of treatment with sildenafil (25 mg x kg(-1) x d(-1)). Both genotypes exhibited a rise in RVSP and RV weight with chronic hypoxia (10% O2 for 21 days); RVSP and RV weight were reduced by continuous sildenafil administration in NPR-A+/+ mice, but only RVSP showed evidence of a response to the drug in NPR-A-/- mice. The effect of sildenafil on hypoxia-induced pulmonary vascular muscularization and cyclic GMP levels was also blunted in NPR-A-/- mice.. The natriuretic peptide pathway influences the response to PDE5 inhibition in hypoxia-induced pulmonary hypertension, particularly its effects on RV hypertrophy and vascular remodeling. Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Animals; Atrial Natriuretic Factor; Blood Pressure; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Disease Models, Animal; Guanylate Cyclase; Homozygote; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; In Vitro Techniques; Lung; Mice; Mice, Mutant Strains; Perfusion; Phosphodiesterase Inhibitors; Phosphoric Diester Hydrolases; Piperazines; Purines; Receptors, Atrial Natriuretic Factor; Respiration, Artificial; Sildenafil Citrate; Sulfones; Ventricular Function, Right | 2003 |