sildenafil-citrate has been researched along with Encephalitis* in 3 studies
3 other study(ies) available for sildenafil-citrate and Encephalitis
Article | Year |
---|---|
Sildenafil (Viagra(®)) prevents and restores LPS-induced inflammation in astrocytes.
Astrocytes are effectively involved in the pathophysiological processes in the central nervous system (CNS) and may contribute to or protect against development of inflammatory and degenerative diseases. Sildenafil is a potent and selective phosphodiesterase-5 (PDE-5) inhibitor, which induces cyclic GMP accumulation. However, the mechanisms of actions on glial cells are not clear. The aim of the present work is to evaluate the role of sildenafil in lipopolysaccharide (LPS)-stimulated astrocytes. The cytoskeleton integrity and Ca(2+) waves were assessed as indicators of inflammatory state. Two main groups were done: (A) one prevention and (B) one restoration. Each of these groups: A1: control; A2: LPS for 24h; A3: sildenafil 1 or 10μM for 4h and then sildenafil 1 or 10μM+LPS for 24h. B1: control; B2: LPS for 24h; B3: LPS for 24h and then LPS+sildenafil 1 or 10μM for 24h. Cytoskeleton integrity was analyzed through GFAP immunolabeling and actin labeling with an Alexa 488-conjugated phalloidin probe. Calcium responses were assessed through a Ca(2+)-sensitive fluorophore Fura-2/AM. The results show that both preventive and restorative treatments with sildenafil (in both concentrations) reduced the Ca(2+) responses in intensity and induced a more organized actin fiber pattern, compared to LPS treated cells. This work demonstrated for the first time that astrocytes are a key part of the sildenafil protective effects in the CNS. Topics: Actin Cytoskeleton; Adenosine Triphosphate; Animals; Astrocytes; Calcium Signaling; Cells, Cultured; Cytoskeleton; Encephalitis; Lipopolysaccharides; Phosphodiesterase 5 Inhibitors; Rats; Sildenafil Citrate | 2016 |
Involvement of AMPK, IKβα-NFκB and eNOS in the sildenafil anti-inflammatory mechanism in a demyelination model.
Sildenafil (Viagra®) has recently been found to have a neuroprotective effect, which occurs through the inhibition of inflammation and demyelination in the cerebellum. However, the mechanism of action of sildenafil remains unknown. AMPK, the regulatory protein of the lipid and glucose metabolism, plays a protective role by activating the eNOS enzyme. The production of a nanomolar concentration of NO by eNOS has an anti-inflammatory effect through the cGMP signaling pathway and plays an important role in the regulation of the nuclear transcription factor (NFkB), preventing the expression of inflammatory genes. The present study investigated whether AMPK-eNOS-NO-cGMP-IКβα-NFkB is involved in the mechanism of action of sildenafil in a cuprizone-demyelination model. Neuroinflammation and demyelination induced by cuprizone in rodents have been widely used as a model of MS. In the present study, five male C57BL/6 mice (7-10 weeks old) were used. Over a four week period, the groups received: cuprizone (CPZ) 0.2% mixed in feed; CPZ in the diet, combined with the administration of sildenafil (Viagra®, Pfizer, 25mg/kg) orally in drinking water, starting concurrently (sild-T0) or 15 days (sild-T15) after the start of CPZ. Control animals received pure food and water. The cerebella of the mice were dissected and processed for immunohistochemistry, immunofluorescence (frozen), western blotting and dosage of cytokines (Elisa). CPZ induced an increase in the expression of GFAP, IL-1β TNF-α, total NFkB and inactive AMPK, and prompt microglia activation. CPZ also induced a reduction of IKβα. The administration of sildenafil reduced the expression of the pro-inflammatory cytokines IL-1β and TNF-α and increased the expression of the anti-inflammatory cytokine IL-10. In addition, the administration of sildenafil reduced expression of GFAP, NFkB, inactive AMPK and iNOS, and increased IKβα. Interestingly, sildenafil also reduced levels of NGF. In general, the sild-T0 group was more effective than sild-T15 in improving clinical status and promoting the control of neuroinflammation. The present study offers evidence that sildenafil has anti-inflammatory and neuroprotective effects, which are probably achieved through modulation of AMPK-IKβα-NFκB signaling. In addition, eNOS may play a role in the sildenafil neuroprotective mechanism, contributing to the activation of AMPK. However, other pathways such as MAPK-NFkB and the downstream proteins AMPK (AMPK-SIRT1-NFκB) should also be Topics: AMP-Activated Protein Kinases; Animals; Anti-Inflammatory Agents; Chelating Agents; Cuprizone; Cytokines; Demyelinating Diseases; Disease Models, Animal; Encephalitis; Enzyme Inhibitors; Glial Fibrillary Acidic Protein; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Nitric Oxide Synthase Type III; Sildenafil Citrate | 2015 |
Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in APP/PS1 transgenic mice.
Memory deficit is a marker of Alzheimer's disease (AD) that has been highly associated with the dysfunction of cyclic GMP (cGMP) signaling and an ongoing inflammatory process. Phosphodiesterase-5 (PDE5) inhibitors prevent the breakdown of cGMP and are currently studied as a possible target for cognitive enhancement. However, it is still unknown whether inhibition of PDE5 reversed β-amyloid peptide (Aβ)-induced neuroinflammation in APP/PS1 transgenic (Tg APP/PS1) mice. The present study evaluated the cognitive behaviors, inflammatory mediators, and cGMP/PKG/pCREB signaling in 15-month-old Tg APP/PS1 mice and age-matched wild-type (WT) mice that were treated with PDE5 inhibitor sildenafil and the inhibitor of cGMP-dependent protein kinase Rp-8-Br-PET-cGMPS. In comparison with WT mice, Tg APP/PS1 mice were characterized by impaired cognitive ability, neuroinflammatory response, and down-regulated cGMP signaling. Sildenafil reversed these memory deficits and cGMP/PKG/pCREB signaling dysfunction; it also reduced both the soluble Aβ1-40 and Aβ1-42 levels in the hippocampus. These effects of sildenafil were prevented by intra-hippocampal infusion of the Rp-8-Br-PET-cGMPS. These results suggest that sildenafil could restore cognitive deficits in Tg APP/PS1 mice by the regulation of PKG/pCREB signaling, anti-inflammatory response and reduction of Aβ levels. Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Analysis of Variance; Animals; Cognition Disorders; Cyclic GMP; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Encephalitis; Exploratory Behavior; Humans; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mutation; Phosphodiesterase 5 Inhibitors; Piperazines; Presenilin-1; Purines; Recognition, Psychology; RNA, Messenger; Sildenafil Citrate; Sulfones; Thionucleotides | 2013 |