sildenafil-citrate and Brain-Injuries

sildenafil-citrate has been researched along with Brain-Injuries* in 4 studies

Reviews

1 review(s) available for sildenafil-citrate and Brain-Injuries

ArticleYear
Sildenafil-Mediated Neuroprotection from Adult to Neonatal Brain Injury: Evidence, Mechanisms, and Future Translation.
    Cells, 2021, 10-15, Volume: 10, Issue:10

    Cerebral stroke, traumatic brain injury, and hypoxic ischemic encephalopathy are among the most frequently occurring brain injuries. A complex pathogenesis, characterized by a synergistic interaction between alterations of the cerebrovascular system, cell death, and inflammation, is at the basis of the brain damage that leads to behavioral and neurodevelopmental disabilities in affected subjects. Sildenafil is a selective inhibitor of the enzyme phosphodiesterase 5 (PDE5) that is able to cross the blood-brain barrier. Preclinical data suggest that sildenafil may be a good candidate for the prevention or repair of brain injury in both adults and neonates. The aim of this review is to summarize the evidence supporting the neuroprotective action of sildenafil and discuss the possible benefits of the association of sildenafil with current therapeutic strategies.

    Topics: Adult; Brain Injuries; Humans; Infant, Newborn; Neuroprotection; Nitric Oxide; Sex Characteristics; Sildenafil Citrate; Translational Research, Biomedical

2021

Other Studies

3 other study(ies) available for sildenafil-citrate and Brain-Injuries

ArticleYear
Modulation of the Nitric Oxide/BH4 Pathway Protects Against Irradiation-Induced Neuronal Damage.
    Neurochemical research, 2021, Volume: 46, Issue:7

    The kynurenine pathway (KP, IDO/Kyn pathway) is an important metabolic pathway related to many diseases. Although cranial radiotherapy is the mainstay in metastatic tumors management, its efficacy is limited owing to the associated neuropsychiatric disorders. Sildenafil (SD) and simvastatin (SV) were reported to have antioxidant/anti-inflammatory effects and to serve as NO donor/BH4 regulator, respectively. Fluoxetine (Fx) is an FDA-approved anti-depressant agent and one of the selective serotonin reuptake inhibitor drugs (SSRI), used in neurological disorder treatment. The study objective was to investigate the role of cranial irradiation (C-IR) on KP signaling impairment and the possible intervention by SD and/or SV (as nitric oxide (NO) donor/Tetrahydrobiopterin (BH4) regulatory) on KP following C-IR-induced disruption compared with Fx (as standard drug).Herein, rats were exposed to C-IR at a single dose level of 25 Gy, then treated with sildenafil (SD) and/or simvastatin (SV), and fluoxetine (Fx) at doses of 75, 20, 10 mg/kg/day, respectively. The body weight gain and forced swimming test (FST) were used for evaluation along with the biochemical quantifications of KP intermediates and histopathological examination of cortex and hippocampus. The results indicated a significant activation of KP following C-IR as manifested by decreased Trp content and increased activities of indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) with a rise in kynurenine (KYN) and quinolinic acid (QA) hippocampal contents. In addition, a state of C-IR-induced oxidative stress, inflammation, NO-pathway dysregulation and neuronal apoptosis were observed as compared to the control group. However, significant modulations were recorded after the combined administration of SD and SV than those offered by each of them alone and by Fx. The biochemical assessment results were supported by the histopathological tissue examination. It could be concluded that the co-administration of SV and SD offers a neuroprotective effect against irradiation-induced brain injury due to its NO donor/BH4 regulatory activities, anti-inflammatory and antioxidant properties that modulate IDO/KYN pathway.

    Topics: Animals; Antidepressive Agents, Second-Generation; Apoptosis; Biopterins; Brain; Brain Injuries; Cranial Irradiation; Depression; Fluoxetine; Gamma Rays; Inflammation; Male; Neuroprotective Agents; Nitric Oxide; Oxidative Stress; Rats; Signal Transduction; Sildenafil Citrate; Simvastatin

2021
Sildenafil Improves Brain Injury Recovery following Term Neonatal Hypoxia-Ischemia in Male Rat Pups.
    Developmental neuroscience, 2016, Volume: 38, Issue:4

    Term asphyxiated newborns remain at risk of developing brain injury despite available neuropreventive therapies such as hypothermia. Neurorestorative treatments may be an alternative. This study investigated the effect of sildenafil on brain injury induced by neonatal hypoxia-ischemia (HI) at term-equivalent age. Neonatal HI was induced in male Long-Evans rat pups at postnatal day 10 (P10) by left common carotid ligation followed by a 2-hour exposure to 8% oxygen; sham-operated rat pups served as the control. Both groups were randomized to oral sildenafil or vehicle twice daily for 7 consecutive days. Gait analysis was performed on P27. At P30, the rats were sacrificed, and their brains were extracted. The surfaces of both hemispheres were measured on hematoxylin and eosin-stained brain sections. Mature neurons and endothelial cells were quantified near the infarct boundary zone using immunohistochemistry. HI caused significant gait impairment and a reduction in the size of the left hemisphere. Treatment with sildenafil led to an improvement in the neurological deficits as measured by gait analysis, as well as an improvement in the size of the left hemisphere. Sildenafil, especially at higher doses, also caused a significant increase in the number of neurons near the infarct boundary zone. In conclusion, sildenafil administered after neonatal HI may improve brain injury recovery by promoting neuronal populations.

    Topics: Animals; Animals, Newborn; Brain; Brain Injuries; Disease Models, Animal; Hypoxia-Ischemia, Brain; Male; Neurons; Recovery of Function; Sildenafil Citrate

2016
Metallothioneins I/II are involved in the neuroprotective effect of sildenafil in focal brain injury.
    Neurochemistry international, 2013, Volume: 62, Issue:1

    We recently reported that administration of the non-selective cyclic GMP-phosphodiesterase (cGMP-PDE) inhibitor zaprinast to cortically cryoinjured rats results three days post-lesion in reduced neuronal cell death that was associated to decreased macrophage/microglial activation and oxidative stress and increased astrogliosis and angiogenesis. Similar effects have been observed in cryoinjured animals overexpressing metallothioneins I/II (MT-I/II), metal-binding cysteine-rich proteins that are up-regulated in response to injury. In this work we have examined the effect of administration of the selective PDE5 inhibitor sildenafil (10mg/kg, sc) 2h before and 24 and 48h after induction of cortical cryolesion in wild-type and MT-I/II-deficient mice. Our results show that in wild-type animals sildenafil induces similar changes in glial reactivity, angiogenesis and antioxidant and antiapoptotic effects in the cryolesioned cortex as those observed in rats with zaprinast, indicating that inhibition of PDE5 is responsible for the neuroprotective actions. However, these effects were not observed in mice deficient in MT-I/II. We further show that sildenafil significantly increases MT-I/II protein levels in homogenates of lesioned cortex and MT-I/II immunostaining in glial cells around the lesion. Taken together these results indicate that cGMP-mediated pathways regulate expression of MT-I/II and support the involvement of these proteins in the neuroprotective effects of sildenafil in focal brain lesion.

    Topics: Animals; Apoptosis; Blotting, Western; Brain Injuries; Cerebral Cortex; Cold Temperature; Cyclic Nucleotide Phosphodiesterases, Type 5; Enzyme-Linked Immunosorbent Assay; Gliosis; Immunohistochemistry; Macrophage Activation; Metallothionein; Mice; Mice, Knockout; Microglia; Neovascularization, Physiologic; Neuroprotective Agents; Oxidative Stress; Phosphodiesterase Inhibitors; Piperazines; Purines; Purinones; Sildenafil Citrate; Sulfones; Up-Regulation

2013