sildenafil-citrate has been researched along with Asthma* in 3 studies
3 other study(ies) available for sildenafil-citrate and Asthma
Article | Year |
---|---|
Inhibitory effects of sildenafil and tadalafil on inflammation, oxidative stress and nitrosative stress in animal model of bronchial asthma.
Cyclic neucleotides are involved in many cellular functions including smooth muscle relaxation, inflammation, and signal transduction. Sildenafil and tadalafil are phosphodiesterase-5 (PDE-5) inhibitors which prevent the degradation of cyclic neucleotide i.e. guanosine 3',5' cyclic monophosphate (cGMP) and increase the levels of cGMP. In this study sildenafil and tadalafil were evaluated for their anti-inflammatory, anti-oxidative and anti-nitrosative stress potential in animal model of bronchial asthma.. Wistar rats were sensitized with 10 mg intraperitoneal (ip) ovalbumin adsorbed to 10 μg of aluminum hydroxide on day 0. Animals were given sildenafil (1 and 3 mg/kg ip) and tadalafil (1 and 3 mg/kg ip) from day 1 to day 14. Also, on day 14 animals were challenged with ovalbumin (1 mg ip). After 24 h, samples were collected to analyze interleukin-4 (IL-4) and tumour necrosis factor-α (TNF-α), in serum and bronchoalveolar lavage fluid (BALF). The oxidative stress markers malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide metabolites (NO. Pre-treatment with sildenafil (1 and 3 mg/kg ip) and tadalafil (1 and 3 mg/kg ip) significantly reduced the levels of pro-inflammatory cytokines IL-4 and TNF-α in rat serum and BALF. In addition, pre-treatment with both the drugs decreased the levels of MDA and NO. Sildenafil and tadalafil decreased pro-inflammatory cytokines in serum and BALF. Both drugs inhibit oxidative and nitrosative stress in animal model of bronchial asthma and could have a therapeutic potential in bronchial asthma. Topics: Animals; Asthma; Bronchi; Bronchoalveolar Lavage Fluid; Cytokines; Disease Models, Animal; Female; Glutathione; Inflammation; Lung; Male; Malondialdehyde; Nitric Oxide; Nitrosative Stress; Oxidative Stress; Rats; Rats, Wistar; Sildenafil Citrate; Tadalafil | 2019 |
Effects of L-arginine and phosphodiesterase-5 inhibitor, sildenafil, on inflammation and airway responsiveness of sensitized BP2 mice.
Nitric oxide (NO) levels are elevated in the exhaled breath of asthmatic patients and NO is considered as a biomarker of airway inflammation. However, the functions of NO in the airways are not completely understood. L-arginine, as the substrate of NO synthases, is the precursor of NO which stimulates guanylate cyclase and leads to the formation of cyclic GMP (cGMP). Sildenafil, a phosphodiestérase-5 (PDE-5) inhibitor, prevents the degradation of cGMP. In this study the effects of L-arginine and sildenafil treatment, alone or in combination, were evaluated in ovalbumin-sensitized BP2 mice. These effects concerning the airway responsiveness to inhaled methacholine (MCh) were evaluated by whole-body plethysmography (WBP), the inflammatory response evaluated by bronchoalveolar lavage fluid (BALF) analyses and lung tissue biopsies (eosinophilic inflammation associated with lung remodelling), and NO metabolite measurements (by Griess reaction) in BALF. Ovalbumin sensitization induced: (a) an inflammatory reaction with eosinophil and neutrophil influx in BALF and lung; and (b) an increased bronchial responsiveness to MCh. L-arginine treatment [50 mg/kg intraperitoneally (i.p.), for 7 days] increased the relative amount of eosinophils and neutrophils in BALF, had a tendency to increase the airway responsiveness to inhaled MCh and increased the NO metabolite level in BAL. Sildenafil treatment (20 mg/kg i.p. for 7 days) did not affect the airway responsiveness to MCh and had a lower effect compared with L-arginine on inflammatory reactions. The combination of the two treatments resulted in a dramatic enhancement of the airway responsiveness to inhaled MCh. The relative amount of eosinophils was increased and lung histology showed obvious worsened tissular lesions such as epithelial shedding and hypertrophy, hyperplasia of smooth muscle cells, and fibrosis. These findings are consistent with the notion that NO production plays a role in the development of airway inflammation and hyperresponsiveness of sensitized mice and highlighted the potential risk of the L-arginine dietary complement or PDE5 treatment in asthmatic patients. Topics: Animals; Arginine; Asthma; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Cyclic GMP; Eosinophilia; Eosinophils; Lung; Male; Methacholine Chloride; Mice; Nitric Oxide; Ovalbumin; Phosphodiesterase 5 Inhibitors; Phosphodiesterase Inhibitors; Piperazines; Plethysmography, Whole Body; Purines; Sildenafil Citrate; Sulfones | 2007 |
Effect of phosphodiesterase-5 inhibitor, sildenafil (Viagra), in animal models of airways disease.
Phosphodiesterase (PDE)-5 degrades guanosine 3',5'cyclic monophosphate (cGMP) and its inhibitor sildenafil citrate (Viagra) treats erectile dysfunction by smooth muscle relaxation through elevated cGMP. Sildenafil was examined in two guinea pig models of airways disease: guinea pigs exposed to LPS or sensitized guinea pigs with atopy exposed to ovalbumen. Ovalbumen exposure caused early- and late-phase bronchoconstrictor responses, measured in conscious animals by whole-body plethysmography. Twenty-four hours after ovalbumen exposure there was airway hyperreactivity (AHR) to inhaled histamine and significantly elevated macrophages, eosinophils, and nitric oxide (NO) metabolites in bronchoalveolar lavage fluid. Sildenafil treatment (1 mg/kg, intraperitoneally) failed to affect the early and late responses but significantly reduced AHR, leukocyte influx, and elevated NO. LPS exposure (30 microg/ml) caused AHR to histamine at 1 hour and macrophage, eosinophil, and neutrophil influx at 24 hours with raised NO. Sildenafil pretreatment inhibited LPS-induced AHR, leukocyte influx, and NO generation. The effectiveness of sildenafil was not dependent on endogenous NO because inhibition of NO synthase with Nomega-nitro-L-arginine methyl ester did not prevent its action. Inhibition of PDE5 by sildenafil was confirmed by elevated S-nitroso-N-acetylpenicillamine-induced cGMP generation in isolated lungs. These antiinflammatory actions of sildenafil in guinea pig models suggest that PDE5 inhibitors may have potential in treating airways disease. Topics: Airway Resistance; Allergens; Animals; Asthma; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Cyclic GMP; Eosinophils; Guinea Pigs; Histamine; In Vitro Techniques; Lipopolysaccharides; Lung; Macrophages; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Ovalbumin; Phosphodiesterase Inhibitors; Piperazines; Purines; Sildenafil Citrate; Sulfones | 2004 |