shu-9119 has been researched along with Weight-Gain* in 4 studies
4 other study(ies) available for shu-9119 and Weight-Gain
Article | Year |
---|---|
Differential control of metabolic and cardiovascular functions by melanocortin-4 receptors in proopiomelanocortin neurons.
We examined the role of melanocortin-4 receptors (MC4R) in proopiomelanocortin (Pomc) neurons in regulating metabolic and cardiovascular functions. Using Cre-loxP technology, we selectively rescued MC4R in Pomc neurons of mice with whole body MC4R deficiency (MC4R-Pomc-Cre mice). Body weight, food intake, and whole body oxygen consumption (Vo2) were determined daily, and blood pressure (BP), heart rate (HR), and body temperature were measured 24 h/day by telemetry. An intracerebroventricular cannula was placed in the right lateral ventricle for intracerebroventricular infusions. Littermate MC4R-deficient (LoxTB-MC4R) mice were used as controls. After control measurements, the MC4R antagonist (SHU-9119; 1 nmol/h) was infused intracerebroventricularly for 7 days. Compared with LoxTB-MC4R mice, MC4R-Pomc-Cre mice were less obese (47 ± 2 vs. 52 ± 2 g) and had increased energy expenditure (2,174 ± 98 vs. 1,990 ± 68 ml·kg⁻¹·min⁻¹), but food intake (4.4 ± 0.2 vs. 4.3 ± 0.3 g/day), BP (112 ± 1 vs. 109 ± 3 mmHg), and HR [557 ± 9 vs. 551 ± 14 beats per minute (bpm)] were similar between groups. Chronic SHU-9119 infusion increased food intake (4.2 ± 0.2 to 6.1 ± 0.5 g/day) and body weight (47 ± 2 to 52 ± 2 g) in MC4R-Pomc-Cre mice, while no changes were observed in LoxTB-MC4R mice. Chronic SHU-9119 infusion also increased BP and HR by 5 ± 1 mmHg and 60 ± 8 bpm in MC4R-Pomc-Cre mice without altering BP or HR in LoxTB-MC4R mice. These results indicate that MC4Rs in Pomc neurons are important for regulation of energy balance. In contrast, while activation of MC4R in Pomc neurons facilitates the BP response to acute stress, our data do not support a major role of MC4R in Pomc neurons in regulating baseline BP and HR. Topics: Adipose Tissue, Brown; Adiposity; alpha-MSH; Animals; Blood Glucose; Blood Pressure; Body Temperature; Brain; Eating; Energy Metabolism; Glucose Tolerance Test; Green Fluorescent Proteins; Heart Rate; Hemodynamics; Infusions, Intraventricular; Integrases; Intra-Abdominal Fat; Ion Channels; Male; Melanocyte-Stimulating Hormones; Mice; Mice, Knockout; Mice, Transgenic; Mitochondrial Proteins; Monitoring, Ambulatory; Neurons; Oxygen Consumption; Peptides, Cyclic; Pro-Opiomelanocortin; Receptor, Melanocortin, Type 4; Recombinant Fusion Proteins; Stress, Physiological; Telemetry; Time Factors; Uncoupling Protein 1; Weight Gain | 2013 |
Enhanced blood pressure and appetite responses to chronic central melanocortin-3/4 receptor blockade in dietary-induced obesity.
We examined the role of central nervous system (CNS) endogenous melanocortin 3/4 receptors (MC3/4R) activity in controlling cardiovascular and metabolic functions in Sprague Dawley rats fed a high-fat diet (n = 6) for 10 months compared with rats fed a standard chow (normal fat, n = 8) starting at 3 weeks of age.. At 7 months of age, high-fat rats were heavier (473 +/- 3 vs. 424 +/- 7 g), consumed more calories with larger, less frequent meals and had reduced respiratory quotient (RQ) compared with normal-fat rats. After 10 months on the diets, arterial and venous catheters were implanted for measurement of mean arterial pressure (MAP) and heart rate (HR) 24-h/day and i.v. (intravenous) infusions, and a 21G steel cannula was placed in the lateral ventricle for intracerebroventricular (ICV) infusions. High-fat rats were heavier (528 +/- 14 vs. 477 +/- 11 g) with increased visceral adiposity and significantly higher MAP (108 +/- 3 vs. 102 +/- 1 mmHg). After a 5-day control period, the rats were infused with a MC3/4R antagonist (SHU-9119, 1 nmol/h, ICV) for 10 days followed by a 5-day recovery period. SHU-9119 infusion for 10 days increased caloric intake significantly more in high-fat rats (159 +/- 19 vs. 64 +/- 8 kcal). Despite increasing caloric intake and rapid weight gain, MC3/4R antagonism reduced MAP more in high-fat diet compared with normal-fat rats (-7.9 +/- 0.3 vs. -4.7 +/- 1.3 mmHg, average reduction of last 4 days of blockade).. These observations suggest that a high-fat diet increases endogenous activity of the CNS MC3/4R and that an intact MC3/4 appears to play an important role in linking increased blood pressure with diet-induced obesity. Topics: Animals; Appetite; Azaperone; Blood Pressure; Dietary Fats; Energy Intake; Heart Rate; Hypertension; Melanocyte-Stimulating Hormones; Obesity; Random Allocation; Rats; Rats, Sprague-Dawley; Receptor, Melanocortin, Type 3; Receptor, Melanocortin, Type 4; Weight Gain | 2010 |
Gestational weight gain by reduced brain melanocortin activity affects offspring energy balance in rats.
Excessive gestational body weight gain of mothers may predispose offspring towards obesity and metabolic derangements. It is difficult to discern the effects of maternal obesogenic factors-such as diet and/or thrifty genetic predisposition-from gestational weight gain per se.. For this reason, genetically normal Wistar rats that were fed regular chow were rendered hypothalamically obese by chronic third-cerebral ventricular (i3vt) infusion during pregnancy and lactation with the melanocortin-3,4 receptor blocker SHU9119. This procedure caused significant increases in body weight gain during pregnancy and lactation compared with controls, and the effects thereof on offspring energy balance and fuel homeostasis were investigated.. At birth, litter weight and size, but not individual pup weight, of SHU9119-treated mothers were significantly smaller than controls. In litters culled to eight, pup weight gain during lactation was only transiently increased by treatment. After weaning, however, male offspring of SHU9119-treated mothers became increasingly heavier over time relative to controls until killing at 9 months. This effect was only transient in females. Increased body weights of males were not associated with disturbances in glucose homeostasis, but with increased energy expenditure instead. Multiple regression analysis revealed that gestational body weight gain, irrespective of the group, contributed positively to increased visceral fat deposition and carbohydrate oxidation in the male offspring. In contrast, the pre-pregnancy body weight of mothers contributed positively to male offspring daily energy expenditure, subcutaneous fat and eviscerated carcass as well as structural organ weights. In female offspring, gestational body weight gain, but not pre-gestational body weight, contributed both to aspects of weight gain as well as to the shift of fat oxidation toward carbohydrate oxidation.. Gestational weight gain induced by low brain melanocortin receptor activity can lead to increased body weight gain in the offspring (particularly in males) independent of obesogenic dietary and/or thrifty genetic predisposition. Topics: Animals; Animals, Newborn; Brain; Energy Metabolism; Female; Hypothalamus; Male; Melanocortins; Melanocyte-Stimulating Hormones; Pregnancy; Rats; Rats, Wistar; Receptors, Melanocortin; Sex Factors; Weight Gain | 2009 |
Role of hypothalamic melanocortin 3/4-receptors in mediating chronic cardiovascular, renal, and metabolic actions of leptin.
The present study examined whether blockade of melanocortin receptors subtypes 3 and 4 (MC3/4-R) inhibits chronic cardiovascular and dietary responses to leptin infusion. A cannula was placed in the lateral ventricle of male Sprague-Dawley rats for chronic intracerebroventricular (ICV) infusion via osmotic minipump, and arterial and venous catheters were implanted for measurement of mean arterial pressure (MAP) and heart rate (HR) 24 h/d and IV infusions. After a 5-day control period, rats received (1) 0.9% saline vehicle ICV for 12 days plus leptin (1 microg/kg per minute IV, n=5) during the final 7 days; (2) MC3/4-R antagonist SHU-9119 (1 nmol/h ICV) for 12 days plus leptin (1 microg/kg per minute IV, n=6) during the final 7 days; and (3) SHU-9119 (1 nmol/h ICV, n=8) for 12 days. Leptin infusion in vehicle-treated rats caused a small increase in MAP (5+/-1 mm Hg) despite reduced food intake (23+/-1 to 10+/-1 g/d) and decreased body weight (-6%+/-1%). SHU-9119 infusion completely prevented the cardiovascular and dietary actions of leptin, leading to increased food intake (23+/-1 to 49+/-4 g/d) and body weight (+30%+/-2%), markedly decreased HR (-77+/-9 bpm), and caused a decrease in MAP (-6+/-1 mm Hg). Similar results were observed when SHU-9119 was infused alone in vehicle-treated rats. Leptin decreased plasma insulin to 30% of control values, an effect that was also abolished by SHU-9119 treatment, which caused a 5-fold increase in plasma insulin concentration. Thus, MC3/4-R antagonism completely blocked the chronic cardiovascular, satiety, and metabolic effects of leptin, suggesting that the hypothalamic melanocortin system plays an important role in mediating these actions of leptin. Topics: Animals; Blood Pressure; Diuresis; Eating; Heart Rate; Hemodynamics; Hypothalamus; Infusion Pumps, Implantable; Insulin; Kidney; Leptin; Male; Melanocyte-Stimulating Hormones; Natriuresis; Rats; Rats, Sprague-Dawley; Receptor, Melanocortin, Type 3; Receptor, Melanocortin, Type 4; Renin; Satiety Response; Weight Gain | 2004 |