shu-9119 and Obesity

shu-9119 has been researched along with Obesity* in 23 studies

Reviews

1 review(s) available for shu-9119 and Obesity

ArticleYear
The role of melanocortins in body weight regulation: opportunities for the treatment of obesity.
    European journal of pharmacology, 2002, Apr-12, Volume: 440, Issue:2-3

    Five G-protein-coupled melanocortin receptors (MC(1)-MC(5)) are expressed in mammalian tissues. The melanocortin receptors support diverse physiological functions, including the regulation of hair color, adrenal function, energy homeostasis, feed efficiency, sebaceous gland lipid production and immune and sexual function. The melanocortins (adrenocorticotropic hormone (ACTH), alpha-melanocyte-stimulating hormone (alpha-MSH), beta-MSH and gamma-MSH) are agonist peptide ligands for the melanocortin receptors and these peptides are processed from the pre-prohormone proopiomelanocortin (POMC). Peptide antagonists for the melanocortin MC(1), MC(3) and MC(4) receptors include agouti-related protein (AgRP) and agouti. Diverse lines of evidence, including genetic and pharmacological data obtained in rodents and humans, support a role for the melanocortin MC(3) and MC(4) receptors in the regulation of energy homeostasis. Recent advances in the development of potent and selective peptide and non-peptide melanocortin receptor ligands are anticipated to help unravel the roles for the melanocortin receptors in humans and to accelerate the clinical use of small molecule melanocortin mimetics.

    Topics: Animals; Anti-Obesity Agents; Body Weight; Gene Expression; Humans; Melanocyte-Stimulating Hormones; Obesity; Receptors, Corticotropin; Receptors, Melanocortin

2002

Other Studies

22 other study(ies) available for shu-9119 and Obesity

ArticleYear
Sites and sources of sympathoexcitation in obese male rats: role of brain insulin.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2020, 03-01, Volume: 318, Issue:3

    In males, obesity increases sympathetic nerve activity (SNA), but the mechanisms are unclear. Here, we investigate insulin, via an action in the arcuate nucleus (ArcN), and downstream neuropathways, including melanocortin receptor 3/4 (MC3/4R) in the hypothalamic paraventricular nucleus (PVN) and dorsal medial hypothalamus (DMH). We studied conscious and α-chloralose-anesthetized Sprague-Dawley rats fed a high-fat diet, which causes obesity prone (OP) rats to accrue excess fat and obesity-resistant (OR) rats to maintain fat content, similar to rats fed a standard control (CON) diet. Nonspecific blockade of the ArcN with muscimol and specific blockade of ArcN insulin receptors (InsR) decreased lumbar SNA (LSNA), heart rate (HR), and mean arterial pressure (MAP) in OP, but not OR or CON, rats, indicating that insulin supports LSNA in obese males. In conscious rats, intracerebroventricular infusion of insulin increased MAP only in OP rats and also improved HR baroreflex function from subnormal to supranormal. The brain sensitization to insulin may elucidate how insulin can drive central SNA pathways when transport of insulin across the blood-brain barrier may be impaired. Blockade of PVN, but not DMH, MC3/4R with SHU9119 decreased LSNA, HR, and, MAP in OP, but not OR or CON, rats. Interestingly, nanoinjection of the MC3/4R agonist melanotan II (MTII) into the PVN increased LSNA only in OP rats, similar to PVN MTII-induced increases in LSNA in CON rats after blockade of sympathoinhibitory neuropeptide Y Y1 receptors. ArcN InsR expression was not increased in OP rats. Collectively, these data indicate that obesity increases SNA, in part via increased InsR signaling and downstream PVN MC3/4R.

    Topics: Animals; Brain; Heart Rate; Insulin; Male; Melanocyte-Stimulating Hormones; Neuropeptide Y; Obesity; Rats; Rats, Sprague-Dawley; Receptor, Melanocortin, Type 4; Receptors, Neuropeptide Y; Sympathetic Nervous System

2020
Central proopiomelanocortin but not neuropeptide Y mediates sympathoexcitation and hypertension in fat fed conscious rabbits.
    Journal of hypertension, 2016, Volume: 34, Issue:3

    High-fat diet (HFD)-induced hypertension in rabbits is neurogenic because of the central sympathoexcitatory actions of leptin. Hypothalamic melanocortin and neuropeptide Y (NPY) neurons are recognized as the major signalling pathways through which leptin exerts its central effects. In this study, we assessed the effects of specific antagonists and agonists to melanocortin and NPY receptors on HFD-induced sympathoexcitation and hypertension.. Rabbits were instrumented with intracerebroventricular cannula, renal sympathetic nerve activity (RSNA) electrode, and blood pressure telemetry transmitter.. After 3 weeks HFD (13.5% fat, n = 12) conscious rabbits had higher RSNA (+3.8  nu, P = 0.02), blood pressure (+8.6  mmHg, P < 0.001) and heart rate (+15  b/min, P = 0.01), and brain-derived neurotrophic factor levels in the hypothalamus compared with rabbits fed a control diet (4.2% fat, n = 11). Intracerebroventricular administration of the melanocortin receptor antagonist SHU9119 reduced RSNA (-2.7  nu) and blood pressure (-8.5  mmHg) in HFD but not control rabbits, thus reversing 100% of the hypertension and 70% of the sympathoexcitation induced by a HFD. By contrast, blocking central NPY Y1 receptors with BVD10 increased RSNA only in HFD rabbits. Intracerebroventricular α-melanocortin stimulating hormone increased RSNA and heart rate (P < 0.001) in HFD rabbits but had no effect in control rabbits.. These findings suggest that obesity-induced hypertension and increased RSNA are dependent on the balance between greater activation of melanocortin signalling through melanocortin receptors and lesser activation of NPY sympathoinhibitory signalling. The amplification of the sympathoexcitatory effects of α-melanocortin stimulating hormone also indicates that the underlying mechanism is related to facilitation of leptin-melanocortin signalling, possibly involving chronic activation of brain-derived neurotrophic factor.

    Topics: alpha-MSH; Animals; Blood Pressure; Brain-Derived Neurotrophic Factor; Diet, High-Fat; Heart Rate; Hormones; Hypertension; Hypothalamus; Kidney; Leptin; Male; Melanocyte-Stimulating Hormones; Neuropeptide Y; Obesity; Pro-Opiomelanocortin; Rabbits; Receptors, Corticotropin; Receptors, Melanocortin; Receptors, Neuropeptide Y; Sympathetic Nervous System

2016
Origin of Aberrant Blood Pressure and Sympathetic Regulation in Diet-Induced Obesity.
    Hypertension (Dallas, Tex. : 1979), 2016, Volume: 68, Issue:2

    High fat diet (HFD)-induced hypertension in rabbits is neurogenic and caused by the central action of leptin, which is thought to be dependent on activation of α-melanocortin-stimulating hormone (α-MSH) and neuropeptide Y-positive neurons projecting to the dorsomedial hypothalamus (DMH) and ventromedial hypothalamus (VMH). However, leptin may act directly in these nuclei. Here, we assessed the contribution of leptin, α-MSH, and neuropeptide Y signaling in the DMH and VMH to diet-induced hypertension. Male New Zealand white rabbits were instrumented with a cannula for drug injections into the DMH or VMH and a renal sympathetic nerve activity (RSNA) electrode. After 3 weeks of an HFD (13.3% fat; n=19), rabbits exhibited higher RSNA, mean arterial pressure (MAP), and heart rate compared with control diet-fed animals (4.2% fat; n=15). Intra-VMH injections of a leptin receptor antagonist or SHU9119, a melanocortin 3/4 receptor antagonist, decreased MAP, heart rate, and RSNA compared with vehicle in HFD rabbits (P<0.05) but not in control diet-fed animals. By contrast, α-MSH or neuropeptide Y injected into the VMH had no effect on MAP but produced sympathoexcitation in HFD rabbits (P<0.05) but not in control diet-fed rabbits. The effects of the leptin antagonist, α-MSH, or neuropeptide Y injections into the DMH on MAP or RSNA of HFD rabbits were not different from those after vehicle injection. α-MSH into the DMH of control diet-fed animals did increase MAP, heart rate, and RSNA. We conclude that the VMH is the likely origin of leptin-mediated sympathoexcitation and α-MSH hypersensitivity that contribute to obesity-related hypertension.

    Topics: alpha-MSH; Animals; Blood Pressure; Diet, High-Fat; Dorsomedial Hypothalamic Nucleus; Hypertension; Leptin; Male; Melanocyte-Stimulating Hormones; Neuropeptide Y; Obesity; Rabbits; Receptors, Leptin; Receptors, Melanocortin; Signal Transduction; Sympathetic Nervous System; Ventromedial Hypothalamic Nucleus

2016
Reversible hyperphagia and obesity in rats with gastric bypass by central MC3/4R blockade.
    Obesity (Silver Spring, Md.), 2014, Volume: 22, Issue:8

    To test the commonly held assumption that gastric bypass surgery lowers body weight because it limits the ability to eat large amounts of food.. Central melanocortin signaling was blocked by ICV infusion of the melanocortin-3/4 receptor antagonist SHU9119 for 14 days in rats whose high-fat diet-induced obesity had been reversed by Roux-en-Y gastric bypass surgery.. SHU9119 increased daily food intake (+ 100%), body weight (+30%), and fat mass (+50%) in rats with RYGB, surpassing the presurgical body weight and that of saline-treated sham-operated rats. Doubling of food intake was entirely due to increased meal frequency, but not meal size. After termination of SHU9119, body weight promptly returned to near preinfusion levels. In sham-operated rats, SHU9119 produced even larger increases in food intake and body weight.. RYGB rats do not settle at a lower level of body weight because they cannot eat more food as they can easily double food intake by increasing meal frequency. The reversible obesity suggests that RYGB rats actively defend the lower body weight. However, because both RYGB and sham-operated rats responded to SHU9119, central melanocortin signaling is not the critical mechanism in RYGB rats responsible for this defense.

    Topics: Animals; Body Weight; Diet, High-Fat; Eating; Gastric Bypass; Hyperphagia; Male; Melanocortins; Melanocyte-Stimulating Hormones; Obesity; Rats; Rats, Sprague-Dawley; Receptor, Melanocortin, Type 4; Weight Loss

2014
Activation of the central melanocortin system contributes to the increased arterial pressure in obese Zucker rats.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2012, Mar-01, Volume: 302, Issue:5

    We have previously demonstrated that leptin-mediated activation of the central nervous system (CNS) melanocortin system reduces appetite and increases sympathetic activity and blood pressure (BP). In the present study we examined whether endogenous melanocortin system activation, independent of leptin's actions, contributes to the regulation of BP and metabolic functions in obese Zucker rats, which have mutated leptin receptors. The long-term cardiovascular and metabolic effects of central melanocortin-3/4 receptor (MC3/4R) antagonism with SHU-9119 were assessed in lean (n = 6) and obese (n = 8) Zucker rats. BP and heart rate (HR) were measured 24-h/day by telemetry and an intracerebroventricular cannula was placed in the brain lateral ventricle. After stable control measurements, SHU-9119 was infused intracerebroventricularlly (1 nmol/h) for 10 days followed by a 10-day recovery period. Chronic CNS MC3/4R antagonism significantly increased food intake and body weight in lean (20 ± 1 to 45 ± 2 g and 373 ± 11 to 432 ± 14 g) and obese (25 ± 2 to 35 ± 2 g and 547 ± 10 to 604 ± 11 g) rats. No significant changes were observed in plasma glucose levels in lean or obese rats, whereas plasma leptin and insulin levels markedly increased in lean Zucker rats during CNS MC3/4R antagonism. Chronic SHU-9119 infusion in obese Zucker rats reduced mean arterial pressure (MAP) and HR by 6 ± 1 mmHg and 24 ± 5 beats/min, whereas in lean rats SHU-9119 infusion reduced HR by 31 ± 9 beats/min while causing only a transient decrease in MAP. These results suggest that in obese Zucker rats the CNS melanocortin system contributes to elevated BP independent of leptin receptor activation.

    Topics: Animals; Blood Glucose; Blood Pressure; Central Nervous System; Disease Models, Animal; Heart Rate; Hypertension; Infusions, Intraventricular; Insulin; Male; Melanocortins; Melanocyte-Stimulating Hormones; Obesity; Rats; Rats, Zucker; Receptor, Melanocortin, Type 3; Receptor, Melanocortin, Type 4; Receptors, Leptin

2012
Activation of the melanocortin-4 receptor causes enhanced excitation in presympathetic paraventricular neurons in obese Zucker rats.
    Regulatory peptides, 2011, Jan-17, Volume: 166, Issue:1-3

    Sympathetic nerve activity is increased in obesity-related hypertension. However, the central mechanisms involved in the increased sympathetic outflow remain unclear. The hypothalamic melanocortin system is important for regulating energy balance and sympathetic outflow. To understand the mechanisms by which the melanocortin systems regulates sympathetic outflow, we investigated the role of melanocortin 4 receptors (MC4R) in regulating presympathetic paraventricular nucleus (PVN) neurons. We performed whole-cell patch-clamp recordings on retrogradely labeled PVN neurons projecting to the rostral ventrolateral medulla in brain slices from obese zucker rats (OZRs) and lean zucker rats (LZRs). The MC4R agonists melanotan II (MTII) and α-melanocyte-stimulating hormone (α-MSH) increased the firing activity and depolarized the labeled PVN neurons from both LZRs and OZRs in a concentration-dependent manner. MTII produced significant greater increase in the firing activity in OZRs than in LZRs. Blocking MC4R with the specific antagonist SHU9119 had no effect on the basal firing rate but abolished the MTII-induced increase in the firing rate in both OZRs and LZRs. Furthermore, intracellular dialysis of guanosine 5'-O-(2-thodiphosphate), but not bath application of kynurenic acid and bicuculline, eliminated the MTII-induced increase in firing activity. In addition, MTII had no effect on the frequency and amplitude of glutamatergic excitatory postsynaptic currents and GABAergic inhibitory postsynaptic currents in labeled PVN neurons. Collectively, our findings suggest that MC4R contributes to the elevated excitability of PVN presympathetic neurons, which may be involved in obesity-related hypertension.

    Topics: alpha-MSH; Animals; Bicuculline; Guanosine Diphosphate; Kynurenic Acid; Male; Melanocyte-Stimulating Hormones; Neurons; Obesity; Paraventricular Hypothalamic Nucleus; Patch-Clamp Techniques; Peptides, Cyclic; Rats; Rats, Zucker; Receptor, Melanocortin, Type 4; Thionucleotides

2011
Enhanced blood pressure and appetite responses to chronic central melanocortin-3/4 receptor blockade in dietary-induced obesity.
    Journal of hypertension, 2010, Volume: 28, Issue:7

    We examined the role of central nervous system (CNS) endogenous melanocortin 3/4 receptors (MC3/4R) activity in controlling cardiovascular and metabolic functions in Sprague Dawley rats fed a high-fat diet (n = 6) for 10 months compared with rats fed a standard chow (normal fat, n = 8) starting at 3 weeks of age.. At 7 months of age, high-fat rats were heavier (473 +/- 3 vs. 424 +/- 7 g), consumed more calories with larger, less frequent meals and had reduced respiratory quotient (RQ) compared with normal-fat rats. After 10 months on the diets, arterial and venous catheters were implanted for measurement of mean arterial pressure (MAP) and heart rate (HR) 24-h/day and i.v. (intravenous) infusions, and a 21G steel cannula was placed in the lateral ventricle for intracerebroventricular (ICV) infusions. High-fat rats were heavier (528 +/- 14 vs. 477 +/- 11 g) with increased visceral adiposity and significantly higher MAP (108 +/- 3 vs. 102 +/- 1 mmHg). After a 5-day control period, the rats were infused with a MC3/4R antagonist (SHU-9119, 1 nmol/h, ICV) for 10 days followed by a 5-day recovery period. SHU-9119 infusion for 10 days increased caloric intake significantly more in high-fat rats (159 +/- 19 vs. 64 +/- 8 kcal). Despite increasing caloric intake and rapid weight gain, MC3/4R antagonism reduced MAP more in high-fat diet compared with normal-fat rats (-7.9 +/- 0.3 vs. -4.7 +/- 1.3 mmHg, average reduction of last 4 days of blockade).. These observations suggest that a high-fat diet increases endogenous activity of the CNS MC3/4R and that an intact MC3/4 appears to play an important role in linking increased blood pressure with diet-induced obesity.

    Topics: Animals; Appetite; Azaperone; Blood Pressure; Dietary Fats; Energy Intake; Heart Rate; Hypertension; Melanocyte-Stimulating Hormones; Obesity; Random Allocation; Rats; Rats, Sprague-Dawley; Receptor, Melanocortin, Type 3; Receptor, Melanocortin, Type 4; Weight Gain

2010
Brain apolipoprotein E: an important regulator of food intake in rats.
    Diabetes, 2008, Volume: 57, Issue:8

    The worldwide prevalence of obesity is increasing at an alarming rate, along with the associated increased rates of type 2 diabetes, heart disease, and some cancers. While efforts to address environmental factors responsible for the recent epidemic must continue, investigation into the anorectic functions of potential molecules we present here, such as apolipoprotein (apo)E, offers exciting possibilities for future development of successful anti-obesity therapies.. Changes in feeding behavior after intracerebroventricular injection of apoE, the regulation of hypothalamic apoE gene expression by energy status, and the interaction of hypothalamic apoE with other neuropeptides were studied.. Intracerebroventricular apoE significantly decreased food intake without causing malaise, whereas intracerebroventricular infusion of apoE antiserum stimulated feeding, implying that endogenous apoE tonically inhibits food intake. Consistent with this, apoE was present in the hypothalamus, a brain site intimately involved in the integration of signals for energy homeostasis. Fasted rats exhibited significantly decreased apoE gene expression in the hypothalamus, and refeeding of these rats for 4 h evoked a significant increase of hypothalamic apoE mRNA levels. Both genetically obese (ob/ob) mice and rats with high-fat diet-induced obesity had significantly reduced hypothalamic apoE mRNA levels compared with their lean control counterparts, suggesting that decreased apoE may contribute to hyperphagia in these obese animals. Additionally, apoE-stimulated hypothalamic proopiomelanocortin gene expression and SHU9119, a melanocortin 3/4 receptor antagonist, attenuated the inhibitory function of apoE on feeding.. These data demonstrate that apoE suppresses food intake via a mechanism enhancing melanocortin signaling in the hypothalamus.

    Topics: Animals; Antibodies; Apolipoproteins E; Blotting, Western; Body Weight; Brain; Dietary Fats; Eating; Fasting; Hypothalamus; Immunohistochemistry; Injections, Intraventricular; Lithium Chloride; Male; Melanocyte-Stimulating Hormones; Mice; Mice, Obese; Neuropeptides; Obesity; Rats; Rats, Long-Evans; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger

2008
Mechanisms mediating renal sympathetic activation to leptin in obesity.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2008, Volume: 295, Issue:6

    Leptin plays a critical role in the control of energy homeostasis. The sympathetic cardiovascular actions of leptin have emerged as a potential link between obesity and hypertension. We previously demonstrated that in mice, modest obesity induced by 10 wk of a high-fat diet is associated with preservation of leptin ability to increase renal sympathetic nerve activity (SNA) despite the resistance to the metabolic effects of leptin. Here, we examined whether selective leptin resistance exists in mice with late-stage diet-induced obesity (DIO) produced by 20 wk of a high-fat diet. The decrease in food intake and body weight induced by intraperitoneal or intracerebroventricular injection of leptin was significantly attenuated in the DIO mice. Regional SNA responses to intravenous leptin were also attenuated in DIO mice. In contrast, intracerebroventricularly administered leptin caused contrasting effects on regional SNA in DIO mice. Renal SNA response to intracerebroventricular leptin was preserved, whereas lumbar and brown adipose tissue SNA responses were attenuated. Intact renal SNA response to leptin combined with the increased cerebrospinal fluid leptin levels in DIO mice represents a potential mechanism for the adverse cardiovascular consequences of obesity. Lastly, we examined the role of phosphoinositol-3 kinase (PI3K) and melanocortin receptors (MCR) in mediating the preserved renal SNA response to leptin in obesity. Presence of PI3K inhibitor (LY294002) or MC3/4R antagonist (SHU9119) significantly attenuated the renal SNA response to leptin in DIO and agouti obese mice. Our results demonstrate the importance of PI3K and melanocortin receptors in the transduction of leptin-induced renal sympathetic activation in obesity.

    Topics: Adipose Tissue, Brown; Animals; Body Weight; Chromones; Dietary Fats; Disease Models, Animal; Dose-Response Relationship, Drug; Eating; Injections, Intraperitoneal; Injections, Intraventricular; Kidney; Leptin; Lumbar Vertebrae; Male; Melanocyte-Stimulating Hormones; Mice; Mice, Inbred C57BL; Mice, Obese; Morpholines; Obesity; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Receptors, Melanocortin; Signal Transduction; Sympathetic Nervous System; Time Factors

2008
Regulation of adipose tissue leptin secretion by alpha-melanocyte-stimulating hormone and agouti-related protein: further evidence of an interaction between leptin and the melanocortin signalling system.
    Journal of molecular endocrinology, 2004, Volume: 32, Issue:1

    The central role of the melanocortin system in the regulation of energy balance has been studied in great detail. However, the functions of circulating melanocortins and the roles of their peripheral receptors remain to be elucidated. There is increasing evidence of a peripheral action of melanocortins in the regulation of leptin production by adipocytes. Here we investigate the interaction of alpha-melanocyte stimulating hormone (alpha-MSH) and agouti-related protein (AgRP) in the regulation of leptin secretion from cultured rat adipocytes and examine the changes in circulating alpha-MSH and AgRP in lean and obese rodents after hormonal and energetic challenge. Leptin secretion (measured by ELISA) and gene expression (by real-time quantitative PCR) of differentiated rat adipocytes cultured in vitro were inhibited by the administration of alpha-MSH (EC50=0.24 nM), and this effect was antagonised by antagonists of the melanocortin receptors MC4R and MC3R (AgRP and SHU9119). The presence of MC4R in rat adipocytes (RT-PCR and restriction digest) supports the involvement of this receptor subtype in this interaction. Leptin administered to ob/ob mice in turn increases the release of alpha-MSH into the circulation, suggesting a possible feedback loop between the site of alpha-MSH release and the release of leptin from the adipose tissue. However, the physiological significance of this putative feedback probably depends upon the underlying state of energy balance, since in the fasting state low plasma alpha-MSH is paralleled by low plasma leptin.

    Topics: Adipocytes; Agouti-Related Protein; alpha-MSH; Animals; Cell Differentiation; Cells, Cultured; Intercellular Signaling Peptides and Proteins; Leptin; Male; Melanocyte-Stimulating Hormones; Mice; Mice, Obese; Obesity; Proteins; Rats; Receptor, Melanocortin, Type 3; Receptor, Melanocortin, Type 4; Receptors, Leptin

2004
Change in CCK-8 response after diet-induced obesity and MC3/4-receptor blockade.
    Peptides, 2004, Volume: 25, Issue:2

    Little is known regarding satiety effects of systemically administered cholecystokinin (CCK-8) in propensity or resistance to dietary-induced obesity (DIO), and of its effect under conditions of melanocortin-3/4R blockade. We found that CCK-8 exerted greater satiety effects in DIO-prone but not DIO-resistant rats, and this occurred only when the rats were placed on a high-fat (HF) diet, when DIO-prone rats failed to compensate for the greater energy density of the diet. CCK-8 also suppressed intake stimulated by melanocortin-3/4R antagonist, SHU9119, but only after 24h of increased feeding. This suggests that under both of these conditions, responsiveness to CCK's satiety effect is not so much affected by a HF diet or significant increases in body weight per se, but by a failure to rapidly limit food intake to that needed only for metabolic need. Identification of an early feeding mediator that is most strongly activated by a HF diet or by an acute challenge to energy homeostasis should provide an ideal anti-obesity target adjunct to CCK-8.

    Topics: Animals; Diet; Male; Melanocyte-Stimulating Hormones; Obesity; Rats; Rats, Sprague-Dawley; Receptor, Melanocortin, Type 3; Receptor, Melanocortin, Type 4; Satiety Response; Sincalide

2004
Feeding and behavioural effects of central administration of the melanocortin 3/4-R antagonist SHU9119 in obese and lean Siberian hamsters.
    Behavioural brain research, 2004, Jul-09, Volume: 152, Issue:2

    Siberian hamsters accumulate fat reserves in long photoperiods, but show a long-term decrease in food intake and body weight when exposed to a short winter photoperiod. The aim of this study was to determine the role of central melanocortin 3/4 receptors (MC3/4-R) in generating this chronic catabolic state by investigating the effects of SHU9119, a MC3/4-R antagonist, on food intake and associated behaviours. In adult male hamsters, intra-cerebroventricular infusions of SHU9119 significantly increased food intake in a dose-dependent manner. The time course of action was slow, food intake being increased between 4 and 24 h after intra-cerebroventricular administration. A similar degree of increase in food intake occurred in fat hamsters in long days and in lean hamsters chronically exposed to short days. Intra-cerebroventricular treatment with MTII (a MC3/4-R agonist) significantly decreased food intake for up to 24 h after treatment, and SHU9119 reversed these suppressive effects between 4 and 24 h after treatment, a similar time course to that observed when SHU9119 was administered alone. We conclude that endogenous melanocortin peptides acting via MC3/4-R are involved in the regulation of food intake in hamsters in both anabolic and catabolic states, but these acute studies do not provide evidence that increased activity of this hypothalamic system underlies the seasonal decrease in food intake that contributes to the long-term catabolic state in short days.

    Topics: alpha-MSH; Analysis of Variance; Animals; Body Weight; Cricetinae; Dose-Response Relationship, Drug; Drug Interactions; Eating; Feeding Behavior; Grooming; Injections, Intraventricular; Male; Melanocyte-Stimulating Hormones; Motor Activity; Obesity; Peptides, Cyclic; Photoperiod; Receptors, Corticotropin; Time Factors

2004
Inverse agonist activity of agouti and agouti-related protein.
    Peptides, 2003, Volume: 24, Issue:4

    Agouti and agouti-related protein (AgRP) are endogenous antagonists of the melanocortin receptors (MCxR). Previous data showed that recombinant full-length agouti and a synthetic fragment of AgRP, AgRP (83-132), are inverse agonists at the MC1R and MC4R, respectively. This study demonstrates the smaller analogs AgRP (87-120) and ASIP [90-132 (L89Y)], and short peptides Yc[CRFFNAFC]Y and Qc[CRFFRSAC]S are also MC4R inverse agonists. Furthermore, the relative affinity of the series of MC4R ligands for displacement of radiolabeled antagonist 125I-AgRP (86-132) versus radiolabeled agonist 125I-NDP-MSH did not correlate with ligand efficacy, which is more consistent with an induced-fit model than a simple two-state model of MC4R activation. These data shed new light on the determinants and mechanism of inverse agonism at the MC4R.

    Topics: Agouti Signaling Protein; Agouti-Related Protein; alpha-MSH; Amino Acid Motifs; beta-MSH; Cell Line; Cyclic AMP; Dose-Response Relationship, Drug; Humans; Hypothalamus; Intercellular Signaling Peptides and Proteins; Kinetics; Ligands; Melanocyte-Stimulating Hormones; Models, Molecular; Obesity; Peptides; Peptides, Cyclic; Pigmentation; Protein Binding; Protein Structure, Tertiary; Proteins; Receptors, Melanocortin; Recombinant Proteins

2003
Hyperleptinemia in A(y)/a mice upregulates arcuate cocaine- and amphetamine-regulated transcript expression.
    American journal of physiology. Endocrinology and metabolism, 2002, Volume: 282, Issue:4

    The effects of leptin on cocaine- and amphetamine-regulated transcript (CART) and agouti-related protein (AGRP) expression in the hypothalamic arcuate nucleus of obese A(y)/a mice were investigated. CART mRNA expression was upregulated by 41% and AGRP mRNA downregulated by 78% in hyperleptinemic A(y)/a mice relative to levels in lean a/a mice. The mRNA expression of these neuropeptides in either young nonobese A(y)/a mice or rats treated with SHU-9119, a synthetic melanocortin-4 receptor (MC4R) antagonist, did not differ significantly from that in the corresponding controls. After a 72-h fast, which decreased the concentration of serum leptin, CART and AGRP mRNA expression decreased and increased, respectively, in A(y)/a mice. The expression levels of these neuropeptides in leptin-deficient A(y)/a ob/ob double mutants were comparable to those in a/a ob/ob mice. Leptin thus modulates both CART and AGRP mRNA expression in obese A(y)/a mice, whereas leptin signals are blocked at the MCR4R level. Taken together, the present findings indicate that differential expression of these neuropeptides in A(y)/a and ob/ob mice results in dissimilar progression toward obesity.

    Topics: Agouti-Related Protein; Animals; Arcuate Nucleus of Hypothalamus; Body Weight; Gene Expression Regulation; Insulin; Intercellular Signaling Peptides and Proteins; Leptin; Male; Melanocyte-Stimulating Hormones; Mice; Mice, Inbred C57BL; Nerve Tissue Proteins; Neurotransmitter Agents; Obesity; Proteins; Rats; Rats, Wistar; Receptor, Melanocortin, Type 4; Receptors, Peptide; RNA, Messenger; RNA, Ribosomal

2002
Responsivity to NPY and melanocortins in obese OLETF rats lacking CCK-A receptors.
    Physiology & behavior, 2002, Volume: 75, Issue:3

    Otsuka Long-Evans Tokushima Fatty (OLETF) rat lacking CCK-A receptors are hyperphagic and obese. Previous work has demonstrated alterations in neuropeptide Y (NPY) and proopiomelanocortin (POMC) mRNA expression in ad libitum fed OLETF rats compared to lean Long-Evans Tokushima Otsuka (LETO) controls. In order to determine whether alterations in sensitivity to central peptides involved in overall feeding control may contribute to the hyperphagia and obesity in OLETF rats, we assessed OLETF and LETO rats feeding responses to lateral ventricular infusions of NPY (1 and 3.2 nmol), the melanocortin 3/4 agonist MTII (0.1 and 0.32 nmol) and the melanocortin receptor antagonist SHU-9119 (0.25 and 0.5 nmol). At a 3-h time point, NPY increased food intake in both OLETF and LETO rats. OLETF rats were more sensitive, having significant increases at both NPY doses and a greater increase at the higher dose. The melanocortin agonist MTII decreased intake in both LETO and OLETF rats. At the 20-h time point, the magnitude of suppression was greater in OLETF rats. SHU-9119 increased food intake in both groups. OLETF rats were more sensitive with larger relative increase and longer-lasting effects at the lower dose. These results are consistent with demonstrated alterations in neuropeptide gene expression in OLETF rats and indicate that alterations in responsivity to NPY and melanocortin signaling are unlikely to contribute to their hyperphagia and obesity.

    Topics: Animals; Appetite Stimulants; Body Weight; Injections, Intraventricular; Male; Melanocyte-Stimulating Hormones; Neuropeptide Y; Obesity; Pro-Opiomelanocortin; Rats; Rats, Inbred OLETF; Receptor, Cholecystokinin A; Receptors, Cholecystokinin

2002
Hypothalamic, metabolic, and behavioral responses to pharmacological inhibition of CNS melanocortin signaling in rats.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2001, May-15, Volume: 21, Issue:10

    The CNS melanocortin (MC) system is implicated as a mediator of the central effects of leptin, and reduced activity of the CNS MC system promotes obesity in both rodents and humans. Because activation of CNS MC receptors has direct effects on autonomic outflow and metabolism, we hypothesized that food intake-independent mechanisms contribute to development of obesity induced by pharmacological blockade of MC receptors in the brain and that changes in hypothalamic neuropeptidergic systems known to regulate weight gain [i.e., corticotropin-releasing hormone (CRH), cocaine-amphetamine-related transcript (CART), proopiomelanocortin (POMC), and neuropeptide Y (NPY)] would trigger this effect. Relative to vehicle-treated controls, third intracerebroventricular (i3vt) administration of the MC receptor antagonist SHU9119 to rats for 11 d doubled food and water intake (toward the end of treatment) and increased body weight ( approximately 14%) and fat content ( approximately 90%), hepatic glycogen content ( approximately 40%), and plasma levels of cholesterol ( approximately 48%), insulin ( approximately 259%), glucagon ( approximately 80%), and leptin ( approximately 490%), whereas spontaneous locomotor activity and body temperature were reduced. Pair-feeding of i3vt SHU9119-treated animals to i3vt vehicle-treated controls normalized plasma levels of insulin, glucagon, and hepatic glycogen content, but only partially reversed the elevations of plasma cholesterol ( approximately 31%) and leptin ( approximately 104%) and body fat content ( approximately 27%). Reductions in body temperature and locomotor activity induced by i3vt SHU9119 were not reversed by pair feeding, but rather were more pronounced. None of the effects found can be explained by peripheral action of the compound. The obesity effects occurred despite a lack in neuropeptide expression responses in the neuroanatomical range selected across the arcuate (i.e., CART, POMC, and NPY) and paraventricular (i.e., CRH) hypothalamus. The results indicate that reduced activity of the CNS MC pathway promotes fat deposition via both food intake-dependent and -independent mechanisms.

    Topics: Animals; Behavior, Animal; Body Composition; Body Temperature; Cholesterol; Drinking; Eating; Glucagon; Hypothalamus; Injections, Intraventricular; Insulin; Leptin; Male; Melanocyte-Stimulating Hormones; Motor Activity; Neurotransmitter Agents; Obesity; Pro-Opiomelanocortin; Rats; Rats, Wistar; Receptors, Corticotropin; Receptors, Melanocortin; RNA, Messenger; Signal Transduction

2001
Central melanocortin system modulates energy intake and expenditure of obese and lean Zucker rats.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2001, Volume: 281, Issue:2

    Melanocortins play a critical role in appetite and body weight regulation, because manipulations of this pathway can lead to the development of obesity in several animal models. The purpose of this study was to use a melanocortin receptor agonist and antagonist to evaluate the involvement of melanocortins in feeding, energy metabolism, and body weight regulation in lean and obese Zucker rats. Central administration of a melanocortin receptor antagonist (SHU9119) elevated food intake and body weight of lean Zucker rats but had little effect in obese Zucker rats. In contrast, the melanocortin receptor agonist MTII reduced food intake in both lean and obese rats but was more potent in the obese Zucker rats. These data indicate the existence of functional melanocortin receptors in both lean and obese Zucker rats but suggest that obese Zucker rats have reduced endogenous melanocortin tone. In addition to its effects on food intake, MTII infusion elevated oxygen consumption and decreased respiratory quotient dose dependently during the light cycle. Our data suggest that a melanocortin receptor agonist can induce weight loss by increasing energy expenditure and promoting body fat utilization in addition to its inhibitory effects on food intake in both obese and lean Zucker rats.

    Topics: alpha-MSH; Animals; Body Weight; Eating; Energy Intake; Energy Metabolism; Male; Melanocyte-Stimulating Hormones; Motor Activity; Obesity; Oxygen; Rats; Rats, Zucker; Receptors, Corticotropin; Receptors, Melanocortin

2001
Differential role of melanocortins in mediating leptin's central effects on feeding and reproduction.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2000, Volume: 278, Issue:1

    Leptin serves as a humoral link coupling the status of energy reserves to the functional activity of the reproductive system. Leptin is thought to act through melanocortinergic pathways in the brain to regulate ingestive behaviors; however, whether melanocortins mediate leptin's actions on the neuroendocrine-reproductive axis is unknown. We tested this hypothesis first by determining whether the effects of leptin on feeding behavior and reproduction in the ob/ob mouse could be blocked by the melanocortin receptor (MC-R) antagonist SHU9119 and second, by examining the effects of the MC-R agonist MTII on feeding and the endocrine-reproductive system. Administered by intracerebroventricular injections, leptin inhibited food intake, raised plasma gonadotropin levels, and increased seminal vesicle weights compared with controls; SHU9119 (intracerebroventricularly) attenuated leptin's effects on food intake and body weight but did not alter leptin's stimulatory effect on the reproductive axis. MTII (intracerebroventricularly and intraperitoneally) decreased food intake and increased body temperature compared with controls but had no effect on the reproductive-endocrine axis. These results suggest that although leptin acts centrally through melanocortinergic pathways to inhibit ingestive behaviors and stimulate metabolism, leptin's activational effect on the reproductive axis is likely to be mediated by other, unknown neuroendocrine circuits.

    Topics: alpha-MSH; Animals; Body Temperature; Body Weight; Brain; Eating; Genitalia, Male; Injections, Intraperitoneal; Injections, Intraventricular; Leptin; Male; Melanocyte-Stimulating Hormones; Mice; Mice, Inbred C57BL; Obesity; Organ Size; Receptors, Corticotropin; Receptors, Melanocortin; Rectum; Reproduction

2000
Pathophysiological role of leptin in obesity-related hypertension.
    The Journal of clinical investigation, 2000, Volume: 105, Issue:9

    To explore the pathophysiological role of leptin in obesity-related hypertension, we examined cardiovascular phenotypes of transgenic skinny mice whose elevated plasma leptin concentrations are comparable to those seen in obese subjects. We also studied genetically obese KKA(y) mice with hyperleptinemia, in which hypothalamic melanocortin system is antagonized by ectopic expression of the agouti protein. Systolic blood pressure (BP) and urinary catecholamine excretion are elevated in transgenic skinny mice relative to nontransgenic littermates. The BP elevation in transgenic skinny mice is abolished by alpha(1)-adrenergic, beta-adrenergic, or ganglionic blockers at doses that do not affect BP in nontransgenic littermates. Central administration of an alpha-melanocyte-stimulating hormone antagonist causes a marked increase in cumulative food intake but no significant changes in BP. The obese KKA(y) mice develop BP elevation with increased urinary catecholamine excretion relative to control KK mice. After a 2-week caloric restriction, BP elevation is reversed in nontransgenic littermates with the A(y) allele, in parallel with a reduction in plasma leptin concentrations, but is sustained in transgenic mice overexpressing leptin with the A(y) allele, which remain hyperleptinemic. This study demonstrates BP elevation in transgenic skinny mice and obese KKA(y) mice that are both hyperleptinemic, thereby suggesting the pathophysiological role of leptin in some forms of obesity-related hypertension.

    Topics: Adrenergic alpha-Antagonists; Adrenergic beta-Antagonists; alpha-MSH; Animals; Blood Pressure; Body Weight; Eating; Energy Intake; Ganglionic Blockers; Heart; Heart Rate; Hexamethonium; Hypertension; Kidney; Leptin; Male; Melanocyte-Stimulating Hormones; Mice; Mice, Transgenic; Models, Biological; Obesity; Organ Size; Sympathetic Nervous System; Systole; Urine

2000
Regulation of leptin by agouti.
    Physiological genomics, 2000, Apr-27, Volume: 2, Issue:3

    Dominant mutations at the mouse Agouti locus lead to ectopic expression of the Agouti gene and exhibit diabetes, obesity, and yellow coat color. Obese yellow mice are hyperinsulinemic and hyperleptinemic, and we hypothesized that Agouti directly induces leptin secretion. Accordingly, we used transgenic mice expressing agouti in adipocytes (under the control of aP2 promoter, aP212) to examine changes in leptin levels. Agouti expression in adipose tissue did not significantly alter food intake, weight gain, fat pad weight, or insulinemia; however, the transgenic mice were hyperglycemic. We demonstrated that plasma leptin levels are approximately twofold higher in aP212 transgenic mice compared with their respective controls, whereas ubiquitous expression of agouti (under the control of beta-actin promoter, BAP20) led to a sixfold increase in leptin. Insulin treatment of aP212 mice increased adipocyte leptin content without affecting plasma leptin levels. These findings were further confirmed in vitro in 3T3-L1 adipocytes treated with recombinant Agouti protein and/or insulin. Agouti but not insulin significantly increased leptin secretion, indicating that insulin enhances leptin synthesis but not secretion while Agouti increases both leptin synthesis and secretion. This increased leptin synthesis and secretion was due to increased leptin mRNA levels by Agouti. Interestingly, agouti regulation of leptin was not mediated by melanocortin receptor 4, previously implicated in agouti regulation of food intake. These results suggest that increased leptin secretion by agouti may serve to limit agouti-induced obesity, independent of melanocortin receptor antagonism, and indicate that interaction between obesity genes may play a key role in obesity.

    Topics: Adipocytes; Adipose Tissue; Agouti Signaling Protein; Animals; Carrier Proteins; Cells, Cultured; Diabetes Mellitus; DNA-Binding Proteins; Drug Administration Schedule; Fatty Acid-Binding Protein 7; Fatty Acid-Binding Proteins; Homozygote; Injections, Subcutaneous; Insulin; Intercellular Signaling Peptides and Proteins; Leptin; Male; Melanocyte-Stimulating Hormones; Mice; Mice, Transgenic; Neoplasm Proteins; Nerve Tissue Proteins; Obesity; Promoter Regions, Genetic; Proteins; Receptor, Melanocortin, Type 4; Receptors, Corticotropin; Receptors, Leptin; Receptors, Melanocortin; Receptors, Peptide; RNA, Messenger

2000
Chronic blockade of the melanocortin 4 receptor subtype leads to obesity independently of neuropeptide Y action, with no adverse effects on the gonadotropic and somatotropic axes.
    Endocrinology, 2000, Volume: 141, Issue:12

    Neuropeptide Y (NPY) is a powerful orexigenic factor, and alphaMSH is a melanocortin (MC) peptide that induces satiety by activating the MC4 receptor subtype. Genetic models with disruption of MC4 receptor signaling are associated with obesity. In the present study, a 7-day intracerebroventricular infusion to male rats of either the MC receptor antagonist SHU9119 or porcine NPY (10 nmol/day) was shown to strongly stimulate food and water intake and to markedly increase fat pad mass. Very high plasma leptin levels were found in NPY-treated rats (27.1 +/- 1.8 ng/ml compared with 9.9 +/- 0.9 ng/ml in SHU9119-treated animals and 2.1 +/- 0.2 ng/ml in controls). As expected, NPY infusion induced hypogonadism, characterized by an impressive decrease in seminal vesicle and prostate weights. No such effects were seen with the SHU9119 infusion. Similarly, whereas the somatotropic axis of NPY-treated rats was fully inhibited, this axis was normally activated in the obese SHU9119-treated rats. Chronic infusion of SHU9119 strikingly reduced hypothalamic gene expression for NPY (65.2 +/- 3.6% of controls), whereas gene expression for POMC was increased (170 +/- 19%). NPY infusion decreased hypothalamic gene expression for both POMC and NPY (70 +/- 9% and 75.4 +/- 9.5%, respectively). In summary, blockade of the MC4 receptor subtype by SHU9119 was able to generate an obesity syndrome with no apparent side-effects on the reproductive and somatotropic axes. In this situation, it is unlikely that hyperphagia was driven by increased NPY release, because hypothalamic NPY gene expression was markedly reduced, suggesting that hyperphagia mainly resulted from loss of the satiety signal driven by MC peptides. NPY infusion produced hypogonadism and hyposomatotropism in the face of markedly elevated plasma leptin levels and an important reduction in hypothalamic POMC synthesis. In this situation NPY probably acted both by exacerbating food intake through Y receptors and by reducing the satiety signal driven by MC peptides.

    Topics: Adipose Tissue; alpha-MSH; Animals; Body Composition; Drinking; Eating; Gene Expression; Gonadotropins; Growth Hormone; Hypogonadism; Hypothalamus; Leptin; Male; Melanocyte-Stimulating Hormones; Neuropeptide Y; Obesity; Organ Size; Pituitary Gland; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley; Receptor, Melanocortin, Type 4; Receptors, Corticotropin; Receptors, LHRH; Satiation; Signal Transduction

2000
Role of melanocortinergic neurons in feeding and the agouti obesity syndrome.
    Nature, 1997, Jan-09, Volume: 385, Issue:6612

    Dominant alleles at the agouti locus (A) cause an obesity syndrome in the mouse, as a consequence of ectopic expression of the agouti peptide. This peptide, normally only found in the skin, is a high-affinity antagonist of the melanocyte-stimulating hormone receptor (MC1-R), thus explaining the inhibitory effect of agouti on eumelanin pigment synthesis. The agouti peptide is also an antagonist of the hypothalamic melanocortin-4 receptor (MC4-R). To test the hypothesis that agouti causes obesity by antagonism of hypothalamic melanocortin receptors, we identified cyclic melanocortin analogues that are potent agonists or antagonists of the neural MC3 (refs 11, 12) and MC4 receptors. Intracerebroventricular administration of the agonist, MTII, inhibited feeding in four models of hyperphagia: fasted C57BL/6J, ob/ob, and A(Y) mice, and mice injected with neuropeptide Y. Co-administration of the specific melanocortin antagonist and agouti-mimetic SHU9119 completely blocked this inhibition. Furthermore, administration of SHU9119 significantly enhanced nocturnal feeding, or feeding stimulated by a prior fast. Our data show that melanocortinergic neurons exert a tonic inhibition of feeding behaviour. Chronic disruption of this inhibitory signal is a likely explanation of the agouti obesity syndrome.

    Topics: Agouti Signaling Protein; alpha-MSH; Animals; Eating; Feeding Behavior; Female; Intercellular Signaling Peptides and Proteins; Male; Melanocyte-Stimulating Hormones; Mice; Mice, Inbred C57BL; Mice, Obese; Neurons; Neuropeptide Y; Obesity; Proteins; Receptor, Melanocortin, Type 3; Receptor, Melanocortin, Type 4; Receptors, Corticotropin; Receptors, Peptide

1997