shogaol and Prostatic-Neoplasms
shogaol has been researched along with Prostatic-Neoplasms* in 2 studies
Other Studies
2 other study(ies) available for shogaol and Prostatic-Neoplasms
Article | Year |
---|---|
6-Shogaol from dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-κB signaling.
Despite much recent progress, prostate cancer continues to represent a major cause of cancer-related mortality and morbidity in men. Prostate cancer is the most common nonskin neoplasm and second leading cause of death in men. 6-Shogaol (6-SHO), a potent bioactive compound in ginger (Zingiber officinale Roscoe), has been shown to possess anti-inflammatory and anticancer activity. In the present study, the effect of 6-SHO on the growth of prostate cancer cells was investigated. 6-SHO effectively reduced survival and induced apoptosis of cultured human (LNCaP, DU145, and PC3) and mouse (HMVP2) prostate cancer cells. Mechanistic studies revealed that 6-SHO reduced constitutive and interleukin (IL)-6-induced STAT3 activation and inhibited both constitutive and TNF-α-induced NF-κB activity in these cells. In addition, 6-SHO decreased the level of several STAT3 and NF-κB-regulated target genes at the protein level, including cyclin D1, survivin, and cMyc and modulated mRNA levels of chemokine, cytokine, cell cycle, and apoptosis regulatory genes (IL-7, CCL5, BAX, BCL2, p21, and p27). 6-SHO was more effective than two other compounds found in ginger, 6-gingerol, and 6-paradol at reducing survival of prostate cancer cells and reducing STAT3 and NF-κB signaling. 6-SHO also showed significant tumor growth inhibitory activity in an allograft model using HMVP2 cells. Overall, the current results suggest that 6-SHO may have potential as a chemopreventive and/or therapeutic agent for prostate cancer and that further study of this compound is warranted. Topics: Animals; Catechols; Cell Line, Tumor; Cell Proliferation; Down-Regulation; Drug Evaluation, Preclinical; Food, Preserved; Humans; Male; Mice; NF-kappa B; Plant Extracts; Prostatic Neoplasms; Signal Transduction; STAT3 Transcription Factor; Zingiber officinale | 2014 |
Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation.
Dietary phytochemicals offer nontoxic therapeutic management as well as chemopreventive intervention for slow-growing prostate cancers. However, the limited success of several single-agent clinical trials suggest a paradigm shift that the health benefits of fruits and vegetables are not ascribable to individual phytochemicals, rather may be ascribed to synergistic interactions among them. We recently reported growth-inhibiting and apoptosis-inducing properties of ginger extract (GE) in in vitro and in vivo prostate cancer models. Nevertheless, the nature of interactions among the constituent ginger biophenolics, viz. 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogoal, remains elusive. Here we show antiproliferative efficacy of the most-active GE biophenolics as single-agents and in binary combinations, and investigate the nature of their interactions using the Chou-Talalay combination index (CI) method. Our data demonstrate that binary combinations of ginger phytochemicals synergistically inhibit proliferation of PC-3 cells with CI values ranging from 0.03 to 0.88. To appreciate synergy among phytochemicals present in GE, the natural abundance of ginger biophenolics was quantitated using LC-UV/MS. Interestingly, combining GE with its constituents (in particular, 6-gingerol) resulted in significant augmentation of GE's antiproliferative activity. These data generate compelling grounds for further preclinical evaluation of GE alone and in combination with individual ginger biophenols for prostate cancer management. Topics: Antineoplastic Agents, Phytogenic; Catechols; Cell Line, Tumor; Cell Proliferation; Chromatography, High Pressure Liquid; Drug Synergism; Fatty Alcohols; Humans; Male; Phytochemicals; Plant Extracts; Prostatic Neoplasms; Zingiber officinale | 2013 |