shogaol has been researched along with Asthma* in 3 studies
3 other study(ies) available for shogaol and Asthma
Article | Year |
---|---|
Pharmacokinetics of Gingerols, Shogaols, and Their Metabolites in Asthma Patients.
6-Gingerol and 6-shogaol are the most abundant gingerols and shogaols in ginger root and have been shown to reduce the asthmatic phenotype in murine models of asthma. Several studies have described the pharmacokinetics of gingerols and shogaols in humans following the oral ingestion of ginger, while little was known about the metabolism of these components in humans, particularly in patients with asthma. In this study, a dietary supplement of 1.0 g of ginger root extract was administered to asthma patients twice daily for 56 days and serum samples were drawn at 0.5-8 h on days 0, 28, and 56. The metabolic profiles of gingerols and shogaols in human plasma and the kinetic changes of gingerols, shogaols, and their metabolites in asthma patients collected on the three different visits were analyzed using liquid chromatography-mass spectrometry (LC-MS). Ketone reduction was the major metabolic pathway of both gingerols and shogaols. Gingerdiols were identified as the major metabolites of 6-, 8-, and 10-gingerols. M11 and M9 were identified as the double-bond reduction and both the double-bond and ketone reduction metabolites of 6-shogaol, respectively. Cysteine conjugation was another major metabolic pathway of 6-shogaol in asthma patients, and two cysteine-conjugated 6-shogaol, M1 and M2, were identified as the major metabolites of 6-shogaol. Furthermore, gingerols, shogaols, and their metabolites were quantitated in the human serum collected at different time points during each of the three visits using a very sensitive high-resolution LC-MS method. The results showed that one-third of 6-gingerol was metabolized to produce its reduction metabolites, 6-gingerdiols, and more than 90% of 6-shogaol was metabolized to its phase I and cysteine-conjugated metabolites, suggesting the importance of considering the contribution of these metabolites to the bioavailability and health beneficial effects of gingerols and shogaols. All gingerols, shogaols, and their metabolites reached their peak concentrations in less than 2 h, and their half-lives ( Topics: Animals; Asthma; Catechols; Cysteine; Fatty Alcohols; Humans; Ketones; Mice; Plant Extracts; Zingiber officinale | 2022 |
Ginger and its bioactive component 6-shogaol mitigate lung inflammation in a murine asthma model.
Asthma, a common disorder associated with airway inflammation and hyperresponsiveness, remains a significant clinical burden in need of novel therapeutic strategies. Patients are increasingly seeking complementary and alternative medicine approaches to control their symptoms, including the use of natural products. Ginger, a natural product that we previously demonstrated acutely relaxes airway smooth muscle (ASM), has long been reported to possess anti-inflammatory properties, although a precise mechanistic understanding is lacking. In these studies, we demonstrate that chronic administration of whole ginger extract or 6-shogaol, a bioactive component of ginger, mitigates in vivo house dust mite antigen-mediated lung inflammation in mice. We further show that this decrease in inflammation is associated with reduced in vivo airway responsiveness. Utilizing in vitro studies, we demonstrate that 6-shogaol augments cAMP concentrations in CD4 cells, consistent with phosphodiesterase inhibition, and limits the induction of nuclear factor-κB signaling and the production of proinflammatory cytokines in activated CD4 cells. Sustained elevations in cAMP concentration are well known to inhibit effector T cell function. Interestingly, regulatory T cells (Tregs) utilize cAMP as a mediator of their immunosuppressive effects, and we demonstrate here that 6-shogaol augments the Treg polarization of naïve CD4 cells in vitro. Taken together with previous reports, these studies suggest that ginger and 6-shogaol have the potential to combat asthma via two mechanisms: acute ASM relaxation and chronic inhibition of inflammation. Topics: Airway Resistance; Animals; Antigens, CD; Antigens, Dermatophagoides; Asthma; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Catechols; Cell Count; Cyclic AMP; Disease Models, Animal; Female; Interleukin-4; Lung; Male; Mice, Inbred C57BL; NF-kappa B; Plant Extracts; Pneumonia; Signal Transduction; T-Lymphocytes, Regulatory; Zingiber officinale | 2020 |
Active components of ginger potentiate β-agonist-induced relaxation of airway smooth muscle by modulating cytoskeletal regulatory proteins.
β-Agonists are the first-line therapy to alleviate asthma symptoms by acutely relaxing the airway. Purified components of ginger relax airway smooth muscle (ASM), but the mechanisms are unclear. By elucidating these mechanisms, we can explore the use of phytotherapeutics in combination with traditional asthma therapies. The objectives of this study were to: (1) determine if 6-gingerol, 8-gingerol, or 6-shogaol potentiate β-agonist-induced ASM relaxation; and (2) define the mechanism(s) of action responsible for this potentiation. Human ASM was contracted in organ baths. Tissues were relaxed dose dependently with β-agonist, isoproterenol, in the presence of vehicle, 6-gingerol, 8-gingerol, or 6-shogaol (100 μM). Primary human ASM cells were used for cellular experiments. Purified phosphodiesterase (PDE) 4D or phospholipase C β enzyme was used to assess inhibitory activity of ginger components using fluorescent assays. A G-LISA assay was used to determine the effects of ginger constituents on Ras homolog gene family member A activation. Significant potentiation of isoproterenol-induced relaxation was observed with each of the ginger constituents. 6-Shogaol showed the largest shift in isoproterenol half-maximal effective concentration. 6-Gingerol, 8-gingerol, or 6-shogaol significantly inhibited PDE4D, whereas 8-gingerol and 6-shogaol also inhibited phospholipase C β activity. 6-Shogaol alone inhibited Ras homolog gene family member A activation. In human ASM cells, these constituents decreased phosphorylation of 17-kD protein kinase C-potentiated inhibitory protein of type 1 protein phosphatase and 8-gingerol decreased myosin light chain phosphorylation. Isolated components of ginger potentiate β-agonist-induced relaxation in human ASM. This potentiation involves PDE4D inhibition and cytoskeletal regulatory proteins. Together with β-agonists, 6-gingerol, 8-gingerol, or 6-shogaol may augment existing asthma therapy, resulting in relief of symptoms through complementary intracellular pathways. Topics: Adrenergic beta-Agonists; Asthma; Catechols; Cell Line; Cyclic Nucleotide Phosphodiesterases, Type 4; Cytoskeletal Proteins; Fatty Alcohols; HSP20 Heat-Shock Proteins; Humans; Intracellular Signaling Peptides and Proteins; Muscle Proteins; Muscle Relaxation; Muscle, Smooth; Myocytes, Smooth Muscle; Myosin Light Chains; Phosphatidylinositols; Phospholipase C beta; Phosphoprotein Phosphatases; Phosphoric Monoester Hydrolases; Phosphorylation; Plant Extracts; Potassium Channels; rhoA GTP-Binding Protein; Zingiber officinale | 2014 |