shikonin and Sarcoma

shikonin has been researched along with Sarcoma* in 2 studies

Other Studies

2 other study(ies) available for shikonin and Sarcoma

ArticleYear
Shikonin derivatives protect immune organs from damage and promote immune responses in vivo in tumour-bearing mice.
    Phytotherapy research : PTR, 2012, Volume: 26, Issue:1

    Shikonin, a major component of Lithospermum erythrorhizon and Arnebia euchroma, exhibits antiinflammatory, immunomodulatory and antitumour activities. Although many recent studies have focused on the antitumour effects of shikonin, the exact mechanisms underlying its antitumour and immunomodulatory effects in tumour-bearing mice remain unclear. The aim of the present study was to investigate the antitumour and immunomodulatory effects of shikonin derivatives (ShD) in tumour-bearing mice. Swiss mice inoculated with hepatoma HepA(22) or sarcoma 180 (S(180)) cells were treated with ShD or 5-fluorouracil (5Fu). Survival time, immune organs, natural killer cell activity, lymphocytes, lymphocyte transformation and interleukin (IL)-2 production were analysed. ShD significantly prolonged the survival (median survival time prolonged by >7 days) of tumour-bearing mice in a dose-dependent manner, inhibited the growth of transplantable neoplasms (inhibitory rate, > 33%), and recovered (at [ShD] = 2.5 mg/kg/day) or increased (at [ShD] > 5 mg/kg/day) the number of CD3- and CD19-positive cells. ShD also played a role in protecting the immune organs from damage and reversed or enhanced immune responses, as noted by the nearly normal thymic structure; enlarged splenic corpuscles; and improved natural killer cell activity, lymphocyte transformation and IL-2 production in ShD-treated mice. ShD reduced the tumour load of tumour-bearing mice and protected the immune organs against tumour-induced damage and immune function impairment.

    Topics: Adjuvants, Immunologic; Animals; Antigens, CD19; Antineoplastic Agents, Phytogenic; Boraginaceae; Carcinoma, Hepatocellular; CD3 Complex; Dose-Response Relationship, Drug; Fluorouracil; Interleukin-2; Killer Cells, Natural; Lithospermum; Liver Neoplasms; Lymphocytes; Mice; Naphthoquinones; Phytotherapy; Plant Extracts; Sarcoma; Spleen; Thymus Gland

2012
SH-7, a new synthesized shikonin derivative, exerting its potent antitumor activities as a topoisomerase inhibitor.
    International journal of cancer, 2006, Sep-01, Volume: 119, Issue:5

    1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enylfuran-2-caroxylate (SH-7), a new naphthoquinone compound, derived from shikonin, exhibited obvious inhibitory actions on topoisomerase II (Topo II) and topoisomerase I (Topo I), which were stronger than its mother compound shikonin. Notably, the SH-7's inhibitory potency on Topo II was much stronger than that on Topo I. In addition, SH-7 significantly stabilized Topo II-DNA cleavable complex and elevated the expression of phosphorylated-H2AX. The in vitro cell-based investigation demonstrated that SH-7 displayed wide cytotoxicity in diversified cancer cell lines with the mean IC(50) value of 7.75 microM. One important finding is SH-7 displayed significant cytotoxicity in the 3 MDR cell lines, with an average IC(50) value nearly equivalent to that of the corresponding parental cell lines. The average resistance factor (RF) of SH-7 was 1.74, which was much lower than those of reference drugs VP-16 (RF 145.92), ADR (RF 105.97) and VCR (RF 197.39). Further studies illustrated that SH-7 had the marked apoptosis-inducing function on leukemia HL-60 cells, which was validated to be of mitochondria-dependence. The in vivo experiments showed that SH-7 had inhibitory effects on S-180 sarcoma implanted to mice, SMMC-7721, BEL-7402 human hepatocellular carcinoma and PC-3 human prostate cancer implanted to nude mice. Taken together, these results suggest that SH-7 induces DSBs as a Topo II inhibitor, which was crucial to activate the apoptotic process, and subsequently accounts for its both in vitro and in vivo antitumor activities. The well-defined Topo II inhibitory activity, antitumor effects particularly with its obvious anti-MDR action, better solubility and less toxicity make SH-7 as a potential antitumor drug candidate for further research and development.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Blotting, Western; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Electrophoresis, Agar Gel; Female; Flow Cytometry; Humans; Leukemia; Liver Neoplasms; Male; Mice; Mice, Nude; Naphthoquinones; Neoplasms; Prostatic Neoplasms; Sarcoma; Topoisomerase II Inhibitors; Transplantation, Heterologous

2006