shikonin has been researched along with Neoplasms* in 33 studies
14 review(s) available for shikonin and Neoplasms
Article | Year |
---|---|
Promising Nanomedicines of Shikonin for Cancer Therapy.
Malignant tumor, the leading cause of death worldwide, poses a serious threat to human health. For decades, natural product has been proven to be an essential source for novel anticancer drug discovery. Shikonin (SHK), a natural molecule separated from the root of Topics: Antineoplastic Agents; Humans; Liposomes; Nanomedicine; Nanoparticle Drug Delivery System; Nanoparticles; Neoplasms; Tumor Microenvironment | 2023 |
Recent advances of antitumor shikonin/alkannin derivatives: A comprehensive overview focusing on structural classification, synthetic approaches, and mechanisms of action.
Shikonin and its enantiomeric analogue, alkaninn, are prevailing natural lead compounds in the drug discovery and development of anticancer agents. Despite having numerous biological effects, the most important activity reported for shikonin derivatives is the antitumor effect which is exerted through various mechanisms such as induction of apoptosis and autophagy. The design, synthesis, and development of new shikonin derivatives are continuously performed with the aim of promoting therapeutic effects through increasing cytotoxicity against cancer cells and simultaneously reducing toxicity on normal cells. In spite of significant advances in the development of shikonin derivatives in recent years and the publication of some reviews in this regard, the structural classification, synthesis methods, as well as the diversity of the anti-tumor mechanism of action of these compounds have not been well considered. This review aims to provide comprehensive data in this regard by reviewing studies conducted over the last two decades (from 2000 until now). Topics: Antineoplastic Agents; Apoptosis; Humans; Naphthoquinones; Neoplasms | 2022 |
Coumarin-containing hybrids and their anticancer activities.
Cancer is the second leading cause of death worldwide, and it results in around 9 million deaths annually. The anticancer agents play an intriguing role in the treatment of cancers, while the severe anticancer scenario and the emergence of drug-resistant especially multidrug-resistant cancers create a huge demand for novel anticancer drugs with different mechanisms of action. The coumarin scaffold is ubiquitous in nature and is a highly privileged motif for the development of novel drugs due to its biodiversity and versatility. Coumarin derivatives can exert diverse antiproliferative mechanisms, and some of them such as Irosustat are under clinical trials for the treatment of various cancers, revealing their potential as putative anticancer drugs. Hybridization of coumarin moiety with other anticancer pharmacophores is a promising strategy to reduce side effects, overcome the drug resistance, and may provide valuable therapeutic intervention for the treatment of cancers. Thus, coumarin-containing hybrids occupy an important position in the development of novel anticancer agents. This review aims to summarize the recent advances made towards the development of coumarin-containing hybrids as potential anticancer agents, covering articles published between 2015 and 2019, and the structure-activity relationship together with mechanisms of action are also discussed. Topics: Animals; Antineoplastic Agents; Coumarins; Drug Design; Drug Discovery; Humans; Neoplasms; Structure-Activity Relationship | 2019 |
Pyruvate kinase M2: A simple molecule with complex functions.
Pyruvate kinase M2 is a critical enzyme that regulates cell metabolism and growth under different physiological conditions. In its metabolic role, pyruvate kinase M2 catalyzes the last glycolytic step which converts phosphoenolpyruvate to pyruvate with the generation of ATP. Beyond this metabolic role in glycolysis, PKM2 regulates gene expression in the nucleus, phosphorylates several essential proteins that regulate major cell signaling pathways, and contribute to the redox homeostasis of cancer cells. The expression of PKM2 has been demonstrated to be significantly elevated in several types of cancer, and the overall inflammatory response. The unusual pattern of PKM2 expression inspired scientists to investigate the unrevealed functions of PKM2 and the therapeutic potential of targeting PKM2 in cancer and other disorders. Therefore, the purpose of this review is to discuss the mechanistic and therapeutic potential of targeting PKM2 with the focus on cancer metabolism, redox homeostasis, inflammation, and metabolic disorders. This review highlights and provides insight into the metabolic and non-metabolic functions of PKM2 and its relevant association with health and disease. Topics: Adenosine Triphosphate; Atherosclerosis; Carrier Proteins; Cell Proliferation; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Glycolysis; Homeostasis; Humans; Inflammation; Inflammatory Bowel Diseases; Insulin; Kidney Diseases; Liver; Membrane Proteins; Metabolic Diseases; Naphthoquinones; Neoplasm Metastasis; Neoplasms; Neuralgia; Oxidants; Oxidation-Reduction; Protein Isoforms; Sepsis; Signal Transduction; Thyroid Hormone-Binding Proteins; Thyroid Hormones; Tissue Distribution | 2019 |
Pharmacological properties and derivatives of shikonin-A review in recent years.
Shikonin is the major bioactive component extracted from the roots of Lithospermum erythrorhizon which is also known as "Zicao" in Traditional Chinese Medicine (TCM). Recent studies have shown that shikonin demonstrates various bioactivities related to the treatment of cancer, inflammation, and wound healing. This review aimed to provide an updated summary of recent studies on shikonin. Firstly, many studies have demonstrated that shikonin exerts strong anticancer effects on various types of cancer by inhibiting cell proliferation and migration, inducing apoptosis, autophagy, and necroptosis. Shikonin also triggers Reactive Oxygen Species (ROS) generation, suppressing exosome release, and activate anti-tumor immunity in multiple molecular mechanisms. Examples of these effects include modulating the PI3K/AKT/mTOR and MAPKs signaling; inhibiting the activation of TrxR1, PKM2, RIP1/3, Src, and FAK; and regulating the expression of ERP57, MMPs, ATF2, C-MYC, miR-128, and GRP78 (Bip). Next, the anti-inflammatory and wound-healing properties of shikonin were also reviewed. Furthermore, several studies focusing on shikonin derivatives were reviewed, and these showed that, with modification to the naphthazarin ring or side chain, some shikonin derivatives display stronger anticancer activity and lower toxicity than shikonin itself. Our findings suggest that shikonin and its derivatives could serve as potential novel drug for the treatment of cancer and inflammation. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents, Phytogenic; Endoplasmic Reticulum Chaperone BiP; Humans; Lithospermum; Naphthoquinones; Neoplasms; Wound Healing | 2019 |
Shikonin derivatives for cancer prevention and therapy.
Phytochemicals gained considerable interest during the past years as source to develop new treatment options for chemoprevention and cancer therapy. Motivated by the fact that a majority of established anticancer drugs are derived in one way or another from natural resources, we focused on shikonin, a naphthoquinone with high potentials to be further developed as preventive or therapeutic drug to fight cancer. Shikonin is the major chemical component of Lithospermum erythrorhizon (Purple Cromwell) roots. Traditionally, the root extract has been applied to cure dermatitis, burns, and wounds. Over the past three decades, the anti-inflammatory and anticancer effects of root extracts, isolated shikonin as well as semi-synthetic and synthetic derivatives and nanoformulations have been described. In vitro and in vivo experiments were conducted to understand the effect of shikonin at cellular and molecular levels. Preliminary clinical trials indicate the potential of shikonin for translation into clinical oncology. Shikonin exerts additive and synergistic interactions in combination with established chemotherapeutics, immunotherapeutic approaches, radiotherapy and other treatment modalities, which further underscores the potential of this phytochemical to be integrated into standard treatment regimens. Topics: Animals; Antineoplastic Agents, Phytogenic; Drugs, Chinese Herbal; Humans; Models, Molecular; Naphthoquinones; Neoplasms; Structure-Activity Relationship | 2019 |
Advance in Anti-tumor Mechanisms of Shikonin, Alkannin and their Derivatives.
Shikonin, alkannin and their derivatives, the main ingredient of Lithospermum erythrorhizon and Arnebia euchroma (Royle) Johnst native to Inner Mongolian and Northwest of China respectively, hold promising potentials for antitumor effects via multiple-target mechanisms. This review will emphasize the importance of their antitumor activity in apoptosis, necroptosis and immunogenic cell death, and expound the relationship of their antitumor activity and naphthoquinone scaffold that could generate ROS and alkylating agent. Meanwhile, the antitumor mechanisms of naturally-occurring shikonin, alkannin and their derivatives, which were divided into the direct interaction involved in alkylating agent, covalently binding the DNA and protein, as well as the indirect interaction mediated by ROS, nonspecifically influencing the mitochondria or multiple signal pathways, will be systematically summarized and discussed. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Cell Death; Drug Screening Assays, Antitumor; Humans; Lithospermum; Naphthoquinones; Neoplasms; Reactive Oxygen Species | 2018 |
Therapeutic agents triggering nonapoptotic cancer cell death.
It is widely recognized that the evasion of apoptotic cell death is one of the hallmarks of cancer. For many years cytotoxic agents have been developed to target apoptotic cell death as a main method of treating cancer. However, the occurrence of cellular defects involving the apoptotic machinery in many cancers has resulted in an acquired resistance to apoptotic cell death, undermining the effectiveness of chemotherapeutic agents. Over the past decade, research has revealed a growing number of cell death pathways that are not dependent on apoptosis. In addition, compounds specifically triggering these alternative cell death pathways have been identified and explored as novel cancer treatment options. These novel anticancer agents are critically discussed by the authors, and therefore, the current Perspective represents a resource for a practicing medicinal chemist looking for new opportunities to combat cancers resistant to the established proapoptotic therapeutic agents. Topics: Antineoplastic Agents; Cell Death; Humans; Lysosomes; Neoplasms | 2013 |
Traditional chinese medicine remedy to jury: the pharmacological basis for the use of shikonin as an anticancer therapy.
Shikonin is the major constituent of the root of Lithospermum erythrorhizon, which has been used in traditional Chinese medicine to treat external wounds, burns, or dermatitis for centuries. Nowadays, this root is commonly used as an herbal medicine against cancer. Studies carried out over the past 30 years have demonstrated that many of the effects historically associated with the use of this root have a scientific basis, with shikonin and its derivatives being responsible for its pharmacological properties. These include both anti-inflammatory and anticancer effects. While previous summaries have focused on the pharmacokinetics and toxicity of shikonin, the aim of this review is to report on the most current findings with regard to shikonin's antitumor activity by summarizing and comparing the various studies published in the last ten years and discussing the pharmacological aspects that make shikonin a promising anticancer agent. Topics: Anti-Inflammatory Agents; Antineoplastic Agents; Humans; Medicine, Chinese Traditional; Naphthoquinones; Neoplasms; Plant Roots | 2013 |
Quinones derived from plant secondary metabolites as anti-cancer agents.
Quinones are plant-derived secondary metabolites that present some anti-proliferation and anti-metastasis effects in various cancer types both in vitro and in vivo. This review focuses on the anti-cancer prospects of plant-derived quinones, namely, aloe-emodin, juglone, β-lapachol, plumbagin, shikonin, and thymoquinone. We intend to summarize their anti-cancer effects and investigate the mechanism of actions to promote the research and development of anti-cancer agents from quinones. Topics: Anthraquinones; Antineoplastic Agents, Phytogenic; Benzoquinones; Cell Line, Tumor; Cell Survival; Humans; Naphthoquinones; Neoplasms; Plant Extracts | 2013 |
[Antitumor effect research progress of shikonin and its derivatives].
Shikonin, the main active ingredient of Lithospermum, and its derivatives have been proved to have antitumor effects, and the anti-tumor mechanisms involve multiple targets. Based on recent literatures, this review focuses on the antitumor effects and its mechanisms. More emphases are given on the aspects of induction of apoptosis, induction of necrosis, acting on matrix metalloproteinase, acting on the protein tyrosine kinase and antiangiogenesis. The current status and problems of shikonin derivatives in antitumor effects are simply summarized and lookout for the development of antitumor drugs with shikonin as leading compounds. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Cell Line, Tumor; Drugs, Chinese Herbal; Humans; Lithospermum; Matrix Metalloproteinase 9; Naphthoquinones; Necrosis; Neoplasms; Neovascularization, Pathologic; Plants, Medicinal; Protein-Tyrosine Kinases; Reactive Oxygen Species | 2012 |
Shikonin and its derivatives: a patent review.
Shikonin and its derivatives are the main components of red pigment extracts from Lithospermum erythrorhizon, whose medicinal properties have been confirmed for a long history, and have aroused great interest as the hallmark molecules responsible for their significant biological activities, especially for their striking anticancer effects.. Areas covered in this paper include a review of the total synthesis, biological effects and mechanisms of shikonin and its derivatives for their anticancer activities in the past decade, basing on literature and patents. The current state and problems are also discussed.. At present, screening for anticancer shikonin derivatives is based on cellular level to find compounds with stronger cytotoxicity. Though several compounds have been discovered with striking cytotoxicity in vitro, however, no selectivity was observed and undoubtedly, the further outcomes have been disappointing because of their great damage to normal cells. Meanwhile, the presumed mechanisms of action are also established in terms of their cytotoxicity. From a pharmacological point of view, most of the shikonin derivatives are at an early stage of their development, and thus it is difficult to determine the exact effectiveness in cancer treatment. With research in this field going deeper, it can be expected that, despite the difficulties, shikonin derivatives as potential anticancer agents will soon follow. Topics: Animals; Antineoplastic Agents, Phytogenic; Drug Design; Humans; Lithospermum; Naphthoquinones; Neoplasms; Patents as Topic; Plant Extracts | 2012 |
Targeting tumor proteasome with traditional Chinese medicine.
The proteasome is a multicatalytic protease complex whose activity is required for the growth of normal or tumor cells. It has been shown that human cancer cells are more sensitive to proteasome inhibition than normal cells, indicating that the proteasome could be a target of chemotherapy. Studies suggest that traditional Chinese medicine (TCM) is an effective approach for cancer treatment. Here we reviewed several TCMs for their potential in treatment of cancer. This short review focuses mainly on the TCMs that potentially target the tumor cellular proteasome and NF-kappaB pathway whose activation is dependent on the proteasome activity. Topics: Animals; Antineoplastic Agents, Phytogenic; Benzyl Compounds; Curcumin; Diterpenes; Drug Delivery Systems; Drug Screening Assays, Antitumor; Drugs, Chinese Herbal; Epoxy Compounds; Humans; Medicine, Chinese Traditional; Molecular Structure; Naphthoquinones; Neoplasms; Pentacyclic Triterpenes; Phenanthrenes; Phenols; Proteasome Endopeptidase Complex; Signal Transduction; Triterpenes | 2010 |
Cellular pharmacology studies of shikonin derivatives.
The naphthoquinone pigment, shikonin, isolated from Lithospermum erythrorhizon Sieb. et Zucc.(Boraginaceae) and its derivatives are the active components isolated from the Chinese herbal therapeutic, Zicao. Historically, Zicao root extracts have been used to treat macular eruption, measles, sore-throat, carbuncles and burns. Multiple pharmacological actions have been attributed to shikonin, e.g. antiinflammatory, antigonadotropic and anti-HIV-1 activity. In this review, several therapeutic applications of shikonin will be summarized including its pleiotropic, antiinflammatory and antitumour effects. Widely diverse and sometimes conflicting activities have been attributed to shikonin, e.g. wound healing, enhanced granuloma formation, suppression of local acute inflammatory reactions, inhibition of angiogenesis, inhibition of select chemokine ligands, inhibition of DNA topoisomerase activity, inhibition of platelet activation and antimicrobial activity. Comparison of the various reported mechanisms of action for shikonin lead us to hypothesize that shikonin is an effective inhibitor of protein-protein interaction with multiple targets in both the intracellular and extracellular compartments. This general inhibitory effect can account for the broad spectrum of shikonin biological and pharmacological activities. Topics: Animals; Anti-Infective Agents; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents, Phytogenic; Granuloma; Humans; Inflammation; Lithospermum; Mast Cells; Naphthoquinones; Neoplasms; Neutrophils; Phytotherapy; Plant Extracts; Platelet Aggregation Inhibitors; Prostaglandin-Endoperoxide Synthases; Respiratory Burst; Signal Transduction; Wound Healing | 2002 |
19 other study(ies) available for shikonin and Neoplasms
Article | Year |
---|---|
Shikonin triggers GSDME-mediated pyroptosis in tumours by regulating autophagy via the ROS-MAPK14/p38α axis.
Shikonin (SK), a botanical drug extracted from Lithospermum erythrorhizon, has been shown to inhibit tumour growth through apoptosis and necrosis. However, whether SK induces pyroptosis in cancer cells is still unknown.. This study aims to investigated the mechanisms of SK-induced pyroptosis in tumour cells and mice.. In vivo and in vitro methods were used in this study. Cell deaths were analysed by LDH and CCK-8 assay and western blotting. To investigated the signalling pathway of SK-induced pyroptosis, various genes expressions were supressed by shRNA or inhibitors. High-sensitivity mass spectrometry assay was used to identified potential factors that regulate GSDME-mediated pyroptosis. Finally, a mouse model was used to investigate the effect of SK administration on tumour growth in vivo.. The activation of BAX/caspase-3 signalling was essential for GSDME-mediated pyroptosis by SK. Mechanistically, the intracellular reactive oxygen species (ROS) generation induced by SK treatment initiated GSDME-dependant pyroptosis. SK stimulation induced protective autophagy in a ROS-dependant manner, and repressed autophagy significantly enhanced SK-induced pyroptosis. Moreover, MAPK14/p38α, a ROS sensor, modulated SK-induced autophagy and ultimately affected GSDME-dependant pyroptosis.. Here, for the first time we demonstrated that SK treatment induced GSDME-dependant pyroptosis in tumour cells. Our results demonstrated that SK initiates ROS signalling to drive pyroptosis in cancer cells. Topics: Animals; Autophagy; Mice; Mitogen-Activated Protein Kinase 14; Neoplasms; Pyroptosis; Reactive Oxygen Species; Receptors, Estrogen | 2023 |
Ferroptosis and Necroptosis Produced Autologous Tumor Cell Lysates Co-Delivering with Combined Immnoadjuvants as Personalized
Nanovaccine-based immunotherapy has been considered as a major pillar to stimulate the host immune system to recognize and eradicate tumor cells as well as establish a long-term immune memory to prevent tumor relapse and metastasis. However, the weak specificity and low cross-presentation of antigens, as well as the immunosuppressive microenvironments of tumor tissues, are still the major obstacles on exerting the therapeutic performance of tumor nanovaccines sufficiently. Herein, we design and construct cytosine guanine dinucleotide (CpG) oligodeoxynucleotide (ODN)-loaded aluminum hydroxyphosphate nanoparticles covered by Fe-Shikonin metal-phenolic networks (MPNs) (Alum-CpG@Fe-Shikonin NPs) as personalized Topics: Antigens; Cancer Vaccines; Ferroptosis; Humans; Immunotherapy; Necroptosis; Neoplasms; Tumor Microenvironment | 2023 |
Shikonin-Loaded Hollow Fe-MOF Nanoparticles for Enhanced Microwave Thermal Therapy.
Microwave (MW) thermal therapy has been widely used for the treatment of cancer in clinics, but it still shows limited efficacy and a high recurrence rate owing to non-selective heat delivery and thermo-resistance. Regulating glycolysis shows great promise to improve MW thermal therapy since glycolysis plays an important role in thermo-resistance, progression, metabolism, and recurrence. Herein, we developed a delivery nanosystem of shikonin (SK)-loaded and hyaluronic acid (HA)-modified hollow Fe-MOF (HFM), HFM@SK@HA, as an efficient glycolysis-meditated agent to improve the efficacy of MW thermal therapy. The HFM@SK@HA nanosystem shows a high SK loading capacity of 31.7 wt %. The loaded SK can be effectively released from the HFM@SK@HA under the stimulation of an acidic tumor microenvironment and MW irradiation, overcoming the intrinsically low solubility and severe toxicity of SK. We also find that the HFM@SK@HA can not only greatly improve the heating effect of MW in the tumor site but also mediate MW-enhancing dynamic therapy efficiency by catalyzing the endogenous H Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Female; Hep G2 Cells; Humans; Iron; L Cells; Metal Nanoparticles; Metal-Organic Frameworks; Mice; Microwaves; Naphthoquinones; Neoplasms; Warburg Effect, Oncologic | 2023 |
Fe(III)-Shikonin supramolecular nanomedicines as immunogenic cell death stimulants and multifunctional immunoadjuvants for tumor vaccination.
Immunoadjuvants, as an indispensable component of tumor vaccines, can observably enhance the magnitude, breadth, and durability of antitumor immunity. However, current immunoadjuvants suffer from different issues such as weak immunogenicity, inadequate cellular internalization, poor circulation time, and mono-functional bioactivity. Topics: Adjuvants, Immunologic; Antigens; Cancer Vaccines; Cell Line, Tumor; Ferric Compounds; Humans; Immunogenic Cell Death; Immunotherapy; Nanomedicine; Neoplasms; Ovalbumin; Tissue Distribution; Tumor Microenvironment; Vaccination | 2023 |
Melatonin sensitises shikonin-induced cancer cell death mediated by oxidative stress via inhibition of the SIRT3/SOD2-AKT pathway.
Recent research suggests that melatonin (Mel), an endogenous hormone and natural supplement, possesses anti-proliferative effects and can sensitise cells to anti-cancer therapies. Although shikonin (SHK) also possesses potential anti-cancer properties, the poor solubility and severe systemic toxicity of this compound hinders its clinical usage. In this study, we combined Mel and SHK, a potentially promising chemotherapeutic drug combination, with the aim of reducing the toxicity of SHK and enhancing the overall anti-cancer effects. We demonstrate for the first time that Mel potentiates the cytotoxic effects of SHK on cancer cells by inducing oxidative stress via inhibition of the SIRT3/SOD2-AKT pathway. Particularly, Mel-SHK treatment induced oxidative stress, increased mitochondrial calcium accumulation and reduced the mitochondrial membrane potential in various cancer cells, leading to apoptosis. This drug combination also promoted endoplasmic reticulum (ER) stress, leading to AKT dephosphorylation. In HeLa cells, Mel-SHK treatment reduced SIRT3/SOD2 expression and SOD2 activity, while SIRT3 overexpression dramatically reduced Mel-SHK-induced oxidative stress, ER stress, mitochondrial dysfunction and apoptosis. Hence, we propose the combination of Mel and SHK as a novel candidate chemotherapeutic regimen that targets the SIRT3/SOD2-AKT pathway in cancer. Topics: Apoptosis; Cell Death; HeLa Cells; Humans; Melatonin; Naphthoquinones; Neoplasms; Oxidative Stress; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Sirtuin 3; Superoxide Dismutase | 2020 |
Design, synthesis and biological evaluation of benzoylacrylic acid shikonin ester derivatives as irreversible dual inhibitors of tubulin and EGFR.
Topics: A549 Cells; Acrylates; Animals; Antineoplastic Agents; Apoptosis; Benzoates; Drug Design; ErbB Receptors; Humans; Mice, Nude; Molecular Docking Simulation; Naphthoquinones; Neoplasms; Tubulin; Tubulin Modulators | 2019 |
Inhibiting neddylation modification alters mitochondrial morphology and reprograms energy metabolism in cancer cells.
Abnormal activation of neddylation modification and dysregulated energy metabolism are frequently seen in many types of cancer cells. Whether and how neddylation modification affects cellular metabolism remains largely unknown. Here, we showed that MLN4924, a small-molecule inhibitor of neddylation modification, induces mitochondrial fission-to-fusion conversion in breast cancer cells via inhibiting ubiquitylation and degradation of fusion-promoting protein mitofusin 1 (MFN1) by SCFβ-TrCP E3 ligase and blocking the mitochondrial translocation of fusion-inhibiting protein DRP1. Importantly, MLN4924-induced mitochondrial fusion is independent of cell cycle progression, but confers cellular survival. Mass-spectrometry-based metabolic profiling and mitochondrial functional assays reveal that MLN4924 inhibits the TCA cycle but promotes mitochondrial OXPHOS. MLN4924 also increases glycolysis by activating PKM2 via promoting its tetramerization. Biologically, MLN4924 coupled with the OXPHOS inhibitor metformin, or the glycolysis inhibitor shikonin, significantly inhibits cancer cell growth both in vitro and in vivo. Together, our study links neddylation modification and energy metabolism, and provides sound strategies for effective combined cancer therapies. Topics: Animals; Apoptosis; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cyclopentanes; Energy Metabolism; Female; GTP Phosphohydrolases; HEK293 Cells; Humans; Metformin; Mice; Mitochondria; Mitochondrial Dynamics; Mitochondrial Membrane Transport Proteins; Naphthoquinones; Neoplasms; Oxidative Phosphorylation; Proteolysis; Pyrimidines; Ubiquitin-Activating Enzymes; Ubiquitination; Xenograft Model Antitumor Assays | 2019 |
Reprogramming Tumor Immune Microenvironment (TIME) and Metabolism via Biomimetic Targeting Codelivery of Shikonin/JQ1.
Remodeling tumor immune microenvironment (TIME) is an important strategy to lift the immunosuppression and achieve immune normalization. In this work, a mannosylated lactoferrin nanoparticulate system (Man-LF NPs) is developed for dual-targeting biomimetic codelivery of shikonin and JQ1 via the mannose receptor and LRP-1 that are overexpressed in both cancer cells and tumor-associated macrophages. The Man-LF NPs can serve as multitarget therapy for inducing immune cell death in the cancer cells, repressing glucose metabolism and repolarizing tumor-associated macrophages, and consequently, lead to remodeling the TIME (e.g., promotion of dendritic cell maturation and CD8 Topics: Azepines; Biomimetics; CD8-Positive T-Lymphocytes; Cell Line, Tumor; Dendritic Cells; Drug Synergism; Gene Expression Regulation, Neoplastic; Humans; Immunotherapy; Lactoferrin; Lectins, C-Type; Low Density Lipoprotein Receptor-Related Protein-1; Macrophages; Mannose; Mannose Receptor; Mannose-Binding Lectins; Nanoparticles; Naphthoquinones; Neoplasms; Receptors, Cell Surface; Triazoles; Tumor Microenvironment | 2019 |
Design and characterization of α-lipoic acyl shikonin ester twin drugs as tubulin and PDK1 dual inhibitors.
Topics: Antineoplastic Agents; Apoptosis; Cell Cycle Checkpoints; Drug Design; Glycolysis; HeLa Cells; Humans; Mitosis; Naphthoquinones; Neoplasms; Protein Serine-Threonine Kinases; Pyruvate Dehydrogenase Acetyl-Transferring Kinase; Tubulin; Tubulin Modulators | 2018 |
Interdependence of GLO I and PKM2 in the Metabolic shift to escape apoptosis in GLO I-dependent cancer cells.
Many cancer cells undergo metabolic reprogramming known as the Warburg effect, which is characterized by a greater dependence on glycolysis for ATP generation, even under normoxic conditions. Glyoxalase I (GLO I) is a rate-limiting enzyme involved in the detoxification of cytotoxic methylglyoxal formed in glycolysis and which is known to be highly expressed in many cancer cells. Thus, specific inhibitors of GLO I are expected to be effective anticancer drugs. We previously discovered a novel GLO I inhibitor named TLSC702. Although the strong inhibitory activity of TLSC702 was observed in the in vitro enzyme assay, higher concentrations were required to induce apoptosis at the cellular level. One of the proposed reasons for this difference is that cancer cells alter the energy metabolism leading them to become more dependent on mitochondrial respiration than glycolysis (Metabolic shift) to avoid apoptosis induction. Thus, we assumed that combination of TLSC702 with shikonin-a specific inhibitor of pyruvate kinase M2 (PKM2) that acts as a driver of TCA cycle by supplying pyruvate and which is known to be specifically expressed in cancer cells-would have anticancer effects. We herein show the anticancer effects of combination treatment with TLSC702 and shikonin, and a possible anticancer mechanism. Topics: Apoptosis; Butyrates; Carrier Proteins; Cell Line, Tumor; Citric Acid Cycle; Drug Screening Assays, Antitumor; Humans; Lactoylglutathione Lyase; Membrane Proteins; Naphthoquinones; Neoplasm Proteins; Neoplasms; Pyruvate Kinase; Pyruvic Acid; Thiazoles; Thyroid Hormone-Binding Proteins; Thyroid Hormones | 2018 |
Excessive Oxidative Stress in the Synergistic Effects of Shikonin on the Hyperthermia-Induced Apoptosis.
Hyperthermia (HT) has been used widely for cancer therapy, and the development of modern devices has made it more efficient. Shikonin (SHK) is a natural naphthoquinone derivative from a Chinese herb. Although the anticancer properties of SHK are evident, the underlying molecular mechanisms are not fully understood.. In this study, the effects of combining low doses of SHK with mild HT were investigated in the U937 cell line.. The cells were subjected to HT at 44°C for 10 min with or without SHK pretreatment, and parameters reflecting apoptosis, ROS generation and intracellular calcium elevation were evaluated by using DNA fragmentation, flow cytometry, and western blot analyses.. SHK 0.5 µM significantly enhanced HT-induced apoptosis as indicated by DNA fragmentation and caspase-3 activation with increased generation of ROS and elevation of intracellular calcium. The combined treatment also synergistically activated proapoptotic proteins and inactivated anti-apoptotic proteins. Furthermore, the phosphorylation of JNK and PKC- δ and the dephosphorylation of ERK and AKT were the upstream effects that may have compounded the induction of apoptosis. The modulatory effects of HT and SHK were abrogated with the employment of NAC and JNK-IN-8 by inactivating the MAPK pathway and cleavage of caspase-3. Intracellular calcium was also elevated and was found to be responsible for the induction of cell death evident by the DNA fragmentation with or without the employment of BAPTA-AM.. Conclusively, this study provides persuasive evidence that SHK in combination with HT is a propitious therapeutic way for augmentation of apoptosis and hence suggest a novel strategy for treating cancers. Topics: Apoptosis; Humans; Hyperthermia, Induced; Naphthoquinones; Neoplasm Proteins; Neoplasms; Oxidative Stress; Reactive Oxygen Species; U937 Cells | 2018 |
Shikonin suppresses proliferation and induces cell cycle arrest through the inhibition of hypoxia-inducible factor-1α signaling.
Hypoxia enhances the development of solid tumors. Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that is dominantly expressed under hypoxia in solid tumor cells and is a key factor of tumor regulation. HIF-1α regulates several target genes involved in many aspects of cancer progression, including angiogenesis, metastasis, and cell proliferation, as well as imparting resistance to cancer treatment. In this study, we assessed shikonin, which derives from the traditional medical herb Lithospermum erythrorhizon, for its anti-cancer effects in hypoxia-induced human colon cancer cell lines. Shikonin showed potent inhibitory activity against hypoxia-induced HIF-1α activation in various human cancer cell lines and efficient scavenging activity of hypoxia-induced reactive oxygen species in tumor cells. Further analysis revealed that shikonin inhibited HIF-1α protein synthesis without affecting the expression of HIF-1α mRNA or degrading HIF-1α protein. It was subsequently shown to attenuate the activation of downstream mTOR/p70S6K/4E-BP1/eIF4E kinase. Shikonin also dose-dependently caused the cell cycle arrest of activated HCT116 cells and inhibited the proliferation of HCT116 and SW620 cells. Moreover, it significantly inhibited tumor growth in a xenograft modal. These findings suggest that shikonin could be considered for use as a potential drug in human colon cancer therapy. Topics: Animals; Antineoplastic Agents, Phytogenic; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Cell Survival; HCT116 Cells; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Lithospermum; Mice; Mice, Inbred BALB C; Mice, Nude; Naphthoquinones; Neoplasms; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; TOR Serine-Threonine Kinases; Transplantation, Heterologous | 2017 |
Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine.
Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan's National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine. Topics: Adult; Animals; Autophagy; Cancer Vaccines; Cell Differentiation; Cell Line, Tumor; Dendritic Cells; Female; Humans; Male; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Middle Aged; Naphthoquinones; Neoplasm Metastasis; Neoplasms; Sirolimus; T-Lymphocytes, Regulatory; Th1 Cells; Th17 Cells; Young Adult | 2015 |
Design, synthesis, and biological evaluation of shikonin and alkannin derivatives as potential anticancer agents via a prodrug approach.
To minimize the cytotoxicity of shikonin and alkannin that arises through the generation of reactive oxygen species (ROS) and alkylation of the naphthazarin ring, two series of novel core-scaffold-modified shikonin and alkannin derivatives were designed. These derivatives, which differ in their configurational and positional isomerism (R-, S-, and 2- and 6-isomers) were synthesized in high enantiomeric excess (>99 % ee). The selectivity of the dimethylated derivatives was significantly higher than the parent shikonin in vitro, but some side effects were still observed in vivo. Surprisingly, the dimethylated diacetyl derivatives with poor anticancer activity in vitro showed tumor-inhibiting effects similar to paclitaxel without any toxicity in vivo. The anticancer activity of these derivatives is in agreement with their low ROS generation and alkylating capacity, emphasizing their potential as prodrugs. This strategy provides means to address the nonspecific cytotoxicity of naphthazarin analogues toward normal cells. Topics: Alkylation; Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Survival; Drug Design; Female; Male; Mice; Microsomes, Liver; Naphthoquinones; Neoplasms; Prodrugs; Rats; Reactive Oxygen Species; Stereoisomerism; Structure-Activity Relationship; Transplantation, Heterologous; Transplantation, Homologous | 2014 |
Anticancer agent shikonin is an incompetent inducer of cancer drug resistance.
Cancer drug resistance is a major obstacle for the success of chemotherapy. Since most clinical anticancer drugs could induce drug resistance, it is desired to develop candidate drugs that are highly efficacious but incompetent to induce drug resistance. Numerous previous studies have proven that shikonin and its analogs not only are highly tumoricidal but also can bypass drug-transporter and apoptotic defect mediated drug resistance. The purpose of this study is to investigate if or not shikonin is a weak inducer of cancer drug resistance.. Different cell lines (K562, MCF-7, and a MDR cell line K562/Adr), after repeatedly treated with shikonin for 18 months, were assayed for drug resistance and gene expression profiling.. After 18-month treatment, cells only developed a mere 2-fold resistance to shikonin and a marginal resistance to cisplatin and paclitaxel, without cross resistance to shikonin analogs and other anticancer agents. Gene expression profiles demonstrated that cancer cells did strongly respond to shikonin treatment but failed to effectively mobilize drug resistant machineries. Shikonin-induced weak resistance was associated with the up-regulation of βII-tubulin, which physically interacted with shikonin.. Taken together, apart from potent anticancer activity, shikonin and its analogs are weak inducers of cancer drug resistance and can circumvent cancer drug resistance. These merits make shikonin and its analogs potential candidates for cancer therapy with advantages of avoiding induction of drug resistance and bypassing existing drug resistance. Topics: Antineoplastic Agents; Cell Proliferation; Cisplatin; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; K562 Cells; MCF-7 Cells; Naphthoquinones; Neoplasms; Paclitaxel; Time Factors | 2013 |
Semi-synthesis and antitumor activity of 6-isomers of 5, 8-O-dimethyl acylshikonin derivatives.
We recently discovered that 5, 8-O-dimethyl acylshikonin derivatives displayed the selectivity towards MCF-7 and no toxicity to normal cells. Herein, a series of the corresponding 6-isomers of 5, 8-O-dimethyl acylshikonin derivatives were synthesized starting from shikonin. In vitro evidence of the cytotoxicities indicated that most of thecompounds were more active than or comparative to shikonin and retained the selectivity against MCF-7, MDA-MB-231 besides no toxicity in the normal cells. Also, in vivo anticancer activity of the positional isomers 5p, 6c further showed that 6-isomers of 5, 8-O-dimethyl acylshikonin derivatives were more active than their corresponding 2-isomers. Thus, we may conclude that the position of the side chain of shikonin attached to 5,8-dimethoxy -1,4-naphthoquinone is associated with the antitumor activity. Topics: Acylation; Animals; Antineoplastic Agents; Cell Survival; Drug Screening Assays, Antitumor; Female; Fibroblasts; Humans; Inhibitory Concentration 50; Isomerism; Male; Mice; Naphthoquinones; Neoplasms; Structure-Activity Relationship; Tumor Cells, Cultured | 2011 |
Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2.
We recently reported that shikonin and its analogs were a class of necroptotic inducers that could bypass cancer drug resistance. However, the molecular targets of shikonin are not known. Here, we showed that shikonin and its analogs are inhibitors of tumor-specific pyruvate kinase-M2 (PKM2), among which shikonin and its enantiomeric isomer alkannin were the most potent and showed promising selectivity, that is, shikonin and alkannin at concentrations that resulted in over 50% inhibition of PKM2 activity did not inhibit PKM1 and pyruvate kinase-L (PKL). Shikonin and alkannin significantly inhibited the glycolytic rate, as manifested by cellular lactate production and glucose consumption in drug-sensitive and resistant cancer cell lines (MCF-7, MCF-7/Adr, MCF-7/Bcl-2, MCF-7/Bcl-x(L) and A549) that primarily express PKM2. HeLa cells transfected with PKM1 showed reduced sensitivity to shikonin- or alkannin-induced cell death. To the best of our knowledge, shikonin and alkannin are the most potent and specific inhibitors to PKM2 reported so far. As PKM2 universally expresses in cancer cells and dictates the last rate-limiting step of glycolysis vital for cancer cell proliferation and survival, enantiomeric shikonin and alkannin may have potential in future clinical application. Topics: Antineoplastic Agents; Cell Line, Tumor; Enzyme Inhibitors; Glucose; Glycolysis; Humans; Lactic Acid; Naphthoquinones; Neoplasms; Pyruvate Kinase | 2011 |
Shikonin analogue (SA) 93/637 induces apoptosis by activation of caspase-3 in U937 cells.
Beta,beta-dimethyl acryl shikonin is an extract from the root of plant Arnebia nobilis which has been shown to possess anti-cancer activity. However, its toxicity limited further development of shikonin as a therapeutic agent. Subsequently, several analogues of beta,beta-dimethyl acryl shikonin were synthesized. One of these analogues, shikonin 93/637 was found to be significantly less toxic compared to shikonin. This study is aimed to determine the cell cycle associated differences in the susceptibility of U937 cells to apoptosis induced by shikonin analogue 93/637 (SA). Lower concentrations of SA (approximately 100 nM) showed no significant changes in cell growth. However, higher concentrations (approximately 500 nM) resulted in growth inhibition of U937 cells after 48 h of treatment with SA as measured by MTT assay. Flow cytometric analysis showed that SA treatment resulted in blocking of cell cycle progression in G1 phase. Decreased expression of Cyclin D, CDK 4 and PCNA was observed with SA treatment corroborating the G1 block. DNA gel electrophoresis showed an oligonucleotide ladder pattern, a distinct characteristic of DNA fragmentation associated with programmed cell death. Ribonuclease protection assay revealed inhibition of bcl2 expression at transcriptional level. SA treatment also resulted in induction of caspase-3 activity. The results suggest the involvement of bcl2 and Caspase-3 in SA induced apoptosis of human U937 cells. Topics: Apoptosis; Caspase 3; Cell Survival; Cinnamates; DNA Fragmentation; Enzyme Activation; Flow Cytometry; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Humans; Naphthoquinones; Neoplasms; Ribonucleases; Tetrazolium Salts; Thiazoles; Transcription, Genetic; U937 Cells | 2008 |
SH-7, a new synthesized shikonin derivative, exerting its potent antitumor activities as a topoisomerase inhibitor.
1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enylfuran-2-caroxylate (SH-7), a new naphthoquinone compound, derived from shikonin, exhibited obvious inhibitory actions on topoisomerase II (Topo II) and topoisomerase I (Topo I), which were stronger than its mother compound shikonin. Notably, the SH-7's inhibitory potency on Topo II was much stronger than that on Topo I. In addition, SH-7 significantly stabilized Topo II-DNA cleavable complex and elevated the expression of phosphorylated-H2AX. The in vitro cell-based investigation demonstrated that SH-7 displayed wide cytotoxicity in diversified cancer cell lines with the mean IC(50) value of 7.75 microM. One important finding is SH-7 displayed significant cytotoxicity in the 3 MDR cell lines, with an average IC(50) value nearly equivalent to that of the corresponding parental cell lines. The average resistance factor (RF) of SH-7 was 1.74, which was much lower than those of reference drugs VP-16 (RF 145.92), ADR (RF 105.97) and VCR (RF 197.39). Further studies illustrated that SH-7 had the marked apoptosis-inducing function on leukemia HL-60 cells, which was validated to be of mitochondria-dependence. The in vivo experiments showed that SH-7 had inhibitory effects on S-180 sarcoma implanted to mice, SMMC-7721, BEL-7402 human hepatocellular carcinoma and PC-3 human prostate cancer implanted to nude mice. Taken together, these results suggest that SH-7 induces DSBs as a Topo II inhibitor, which was crucial to activate the apoptotic process, and subsequently accounts for its both in vitro and in vivo antitumor activities. The well-defined Topo II inhibitory activity, antitumor effects particularly with its obvious anti-MDR action, better solubility and less toxicity make SH-7 as a potential antitumor drug candidate for further research and development. Topics: Animals; Antineoplastic Agents; Apoptosis; Blotting, Western; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Electrophoresis, Agar Gel; Female; Flow Cytometry; Humans; Leukemia; Liver Neoplasms; Male; Mice; Mice, Nude; Naphthoquinones; Neoplasms; Prostatic Neoplasms; Sarcoma; Topoisomerase II Inhibitors; Transplantation, Heterologous | 2006 |