shikonin has been researched along with Liver-Neoplasms* in 17 studies
17 other study(ies) available for shikonin and Liver-Neoplasms
Article | Year |
---|---|
Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery.
There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target.. A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor.. SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFβ signaling; the amount of cytotoxic effector CD8. The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT. Topics: Animals; CD8-Positive T-Lymphocytes; Colorectal Neoplasms; Epithelial-Mesenchymal Transition; Humans; Hyaluronic Acid; Lactic Acid; Liver Neoplasms; Mice; Tumor Microenvironment | 2023 |
Beta-Hydroxyisovaleryl-Shikonin Eradicates Epithelial Cell Adhesion Molecule-Positive Liver Cancer Stem Cells by Suppressing dUTP Pyrophosphatase Expression.
Cancer stem cells (CSCs) play an essential role in tumorigenesis, chemoresistance, and metastasis. Previously, we demonstrated that the development of hepatocellular carcinoma (HCC) is dictated by a subset of epithelial cell adhesion molecule-positive (EpCAM+) liver CSCs with the activation of Wnt signaling. In this study, we evaluated the expression of dUTP pyrophosphatase (dUTPase), which plays a central role in the development of chemoresistance to 5-fluorouracil, in EpCAM+ HCC cells. We further evaluated the effect of beta-hydroxyisovaleryl-shikonin (β-HIVS), an ATP-noncompetitive inhibitor of protein tyrosine kinases, on HCC CSCs. EpCAM and dUTPase were expressed in hepatoblasts in human fetal liver, hepatic progenitors in adult cirrhotic liver, and a subset of HCC cells. Sorted EpCAM+ CSCs from HCC cell lines showed abundant nuclear accumulation of dUTPase compared with EpCAM-negative cells. Furthermore, treatment with the Wnt signaling activator BIO increased EpCAM and dUTPase expression. In contrast, β-HIVS treatment decreased dUTPase expression. β-HIVS treatment decreased the population of EpCAM+ liver CSCs in a dose-dependent manner in vitro and suppressed tumor growth in vivo compared with the control vehicle. Taken together, our data suggest that dUTPase could be a good target to eradicate liver CSCs resistant to 5-fluorouracil. β-HIVS is a small molecule that could decrease dUTPase expression and target EpCAM+ liver CSCs. Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Epithelial Cell Adhesion Molecule; Fluorouracil; Humans; Liver Neoplasms; Neoplastic Stem Cells | 2023 |
Sonosensitizer Nanoplatforms Augmented Sonodynamic Therapy-Sensitizing Shikonin-Induced Necroptosis Against Hepatocellular Carcinoma.
Apoptosis resistance of hepatocellular carcinoma (HCC) often leads to treatment failure. Nonetheless, overcoming the resistance of HCC to apoptosis by inducing necroptosis of tumor cells to bypass the apoptotic pathway may be a promising treatment strategy. Sonodynamic therapy (SDT) has broad prospects in disease treatment because of its noninvasive characteristic and spatiotemporal control. The combination of SDT and shikonin in the treatment of HCC is expected to be a new tumor treatment method that can overcome apoptosis resistance.. In this study, the antitumor effect was evaluated using normal liver cell line WRL68, HCC cell line HepG2 and HepG2 xenograft mouse models. Indocyanine green (ICG) was loaded on nanobubbles (NBs) to construct ICG-loaded nanobubbles (ICG-NBs). Combined sonosensitizer nanoplatforms with ultrasound (US) to achieve efficient SDT, the combination of SDT and shikonin in treating HCC can activate shikonin-induced necroptosis. As a result, tumor cells that produced apoptosis resistance were destroyed by necroptosis.. The results indicated a successful preparation of ICG-NBs with a uniform particle size of 273.0 ± 118.9 nm spherical structures. ICG-NB-mediated SDT, in combination with shikonin treatment, inhibited the viability, invasion, and migration of tumor cells. SDT + shikonin treatment group caused a substantial increase in necroptotic cells. The increased degree of tumor necrosis and the upregulated expression of receptor-interacting protein 3 kinase were observed in vivo studies, which indicated that the antitumor effect was accompanied by enhanced necroptosis in the SDT + shikonin treatment group.. ICG-NB-mediated SDT combined with shikonin inhibits the growth of HCC by increasing the necroptosis of tumor cells. Therefore, this combination therapy is a promising treatment strategy against the specific cancer. Topics: Animals; Apoptosis; Carcinoma, Hepatocellular; Cell Line, Tumor; Humans; Indocyanine Green; Liver Neoplasms; Mice; Necroptosis; Reactive Oxygen Species | 2023 |
Shikonin induces apoptosis and autophagy via downregulation of pyrroline-5-carboxylate reductase1 in hepatocellular carcinoma cells.
Shikonin(SK) is a natural small molecule naphthoquinone compound, which has anti-cancer activity in various human malignant tumors. Pyrroline-5-carboxylate reductase 1(PYCR1) is involved in tumorigenesis and regulates various cellular processes, including growth, invasion, migration, and apoptosis. However, the effect of SK and PYCR1 on apoptosis and autophagy in hepatocellular carcinoma are unclear. Our goal is to determine the internal molecular mechanism of the interaction between SK and PYCR1 and its role in the occurrence and development of liver cancer. The CCK8 assay, wound healing assay, and transwell assays show that SK and siPYCR1(gene silence PYCR1) inhibited the malignant phenotype of HCC cells, including cell viability, colony formation, migration, and invasion, respectively. The flow cytometry assays and immunofluorescence show that SK and siPYCR1 activated apoptosis and autophagy, respectively. SK induces apoptosis and autophagy in a dose-dependent manner. In addition, HCC cells were transfected with small interference fragment PYCR1 siRNA to construct siPYCR1 and SK single treatment group and co-treatment group to verify the interaction between SK and PYCR1. The Western blot identified that PI3K/Akt/mTOR signal pathway protein expression was significantly downregulated in HCC cells treated with SK and siPYCR1 together. Collectively, SK may induce apoptosis and autophagy by reducing the expression of PYCR1 and suppressing PI3K/Akt/mTOR. Thus, SK may be a promising antineoplastic drug in Hepatocellular carcinoma (HCC). SK downregulating PYCR1 might supply a theoretical foundation for the potential therapeutic application in hepatocellular carcinoma. Topics: Apoptosis; Autophagy; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Down-Regulation; Humans; Liver Neoplasms; Naphthoquinones; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Pyrroles; Pyrroline Carboxylate Reductases; TOR Serine-Threonine Kinases | 2022 |
Shikonin differentially regulates glucose metabolism via PKM2 and HIF1α to overcome apoptosis in a refractory HCC cell line.
In tumor cells, shikonin treatment has been reported to inhibit glycolysis by suppressing the activity of pyruvate kinase M2 (PKM2) and to induce apoptosis by increasing reactive oxygen species (ROS) production. However, hepatocellular carcinoma (HCC) shows variable sensitivity to shikonin treatment, and the mechanism for these differences remains unclear. We evaluated the effects of shikonin on metabolic and oxidative pathways in sensitive and refractory HCC cell lines to identify mechanisms of differential sensitivity.. The sensitivity to shikonin treatment was significantly higher for HepG2 cells than for HCCLM3 cells, with less dramatic effects in HCCLM3 cells on apoptosis, ROS, and oxidative phosphorylation. Shikonin up-regulated mitochondrial biogenesis to increase mitochondrial oxidative phosphorylation in HepG2 cells, but displayed the opposite trend in HCCLM3 cells. Mechanistically, shikonin promoted nuclear expression of PKM2 and HIF1α in HCCLM3 cells, with upregulation of glycolysis-related gene transcription and glycolysis.. These results suggest that PKM2 rewires glucose metabolism, which explains the differential sensitivity to shikonin-induced apoptosis in HCC cells. Our findings elucidate mechanisms for differential responses to shikonin, provide potential biomarkers, and indicate a theoretical basis for targeting glycolytic enzymes in refractory HCC. Topics: Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Carcinoma, Hepatocellular; Carrier Proteins; Dose-Response Relationship, Drug; Glucose; Glycolysis; Hep G2 Cells; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Liver Neoplasms; Membrane Proteins; Naphthoquinones; Thyroid Hormone-Binding Proteins; Thyroid Hormones | 2021 |
Connexin32 activates necroptosis through Src-mediated inhibition of caspase 8 in hepatocellular carcinoma.
Necroptosis is an alternative form of programmed cell death that generally occurs under apoptosis-deficient conditions. Our previous work showed that connexin32 (Cx32) promotes the malignant progress of hepatocellular carcinoma (HCC) by enhancing the ability of resisting apoptosis in vivo and in vitro. Whether triggering necroptosis is a promising strategy to eliminate the apoptosis-resistant HCC cells with high Cx32 expression remains unknown. In this study, we found that Cx32 expression was positively correlated with the expression of necroptosis protein biomarkers in human HCC specimens, cell lines, and a xenograft model. Treatment with shikonin, a well-used necroptosis inducer, markedly caused necroptosis in HCC cells. Interestingly, overexpressed Cx32 exacerbated shikonin-induced necroptosis, but downregulation of Cx32 alleviated necroptosis in vitro and in vivo. Mechanistically, Cx32 was found to bind to Src and promote Src-mediated caspase 8 phosphorylation and inactivation, which ultimately reduced the activated caspase 8-mediated proteolysis of receptor-interacting serine-threonine protein kinase 1/3, the key molecule for necroptosis activation. In conclusion, we showed that Cx32 contributed to the activation of necroptosis in HCC cells through binding to Src and then mediating the inactivation of caspase 8. The present study suggested that necroptosis inducers could be more favorable than apoptosis inducers to eliminate HCC cells with high expression of Cx32. Topics: Animals; Apoptosis; Carcinoma, Hepatocellular; Caspase 8; Cell Line, Tumor; Cell Proliferation; Connexins; Gap Junction beta-1 Protein; Gene Knockdown Techniques; Humans; Liver Neoplasms; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Naphthoquinones; Necroptosis; Nuclear Receptor Coactivator 1; Phosphorylation; Signal Transduction; Transfection; Tumor Burden | 2021 |
Shikonin suppresses progression and epithelial-mesenchymal transition in hepatocellular carcinoma (HCC) cells by modulating miR-106b/SMAD7/TGF-β signaling pathway.
Shikonin is a natural naphthoquinone component with antioxidant and anti-tumor function and has been used for hepatocellular carcinoma (HCC) treatment. According to the previous study, many herbs can regulate cancer cell progression by targeting specific microRNA (miRNA) (Liu, 2016). However, the underlying pathological mechanism of shikonin in HCC therapy is still unclear. The detection of cell growth and death rate were performed by hemacytometry and trypan blue staining, respectively. The expression of miR-106b and SMAD7 messenger RNA (mRNA) in HCC cells was evaluated by quantitative real-time polymerase chain reaction. Cell proliferation, apoptosis, and migration ability were measured by cell counting kit-8 (CCK-8), flow cytometry, and transwell assay. The expression of proteins E-cadherin, N-cadherin, vimentin, SMAD7, TGF-β1, p-SMAD3, SMAD3, and GAPDH was examined by western blot. The interaction between SMAD7 and miR-106b was assessed by luciferase reporter system. Shikonin inhibited Huh7 and HepG2 cell growth in a dose-dependent manner while induced cell death in a time-dependent manner. In addition, the expression of miR-106b was reduced after shikonin treatment. Moreover, miR-106b attenuated the suppressive effects of shikonin on HCC cell migration and epithelial-mesenchymal transition (EMT). SMAD7 was predicted as a target of miR-106b and the prediction was confirmed by luciferase reporter system. Additionally, we observed that SMAD7 reversed the promotive effects of miR-106b on HCC cell progression and EMT. The subsequent western blot assay revealed that shikonin could modulate SMAD7/TGF-β signaling pathway by targeting miR-106b. In conclusion, Shikonin suppresses cell progression and EMT and accelerates cell death of HCC cells via modulating miR-106b/SMAD7/TGF-β signaling pathway, suggesting shikonin could be an effective agent for HCC treatment. Topics: Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Biomarkers, Tumor; Carcinoma, Hepatocellular; Cell Proliferation; Epithelial-Mesenchymal Transition; Gene Expression Regulation, Neoplastic; Humans; Liver Neoplasms; MicroRNAs; Naphthoquinones; Smad7 Protein; Transforming Growth Factor beta1; Tumor Cells, Cultured | 2020 |
Shikonin exerts antitumor activity by causing mitochondrial dysfunction in hepatocellular carcinoma through PKM2-AMPK-PGC1α signaling pathway.
Shikonin, a naphthoquinone derivative isolated from the root of Topics: AMP-Activated Protein Kinases; Antineoplastic Agents, Phytogenic; Carcinoma, Hepatocellular; Carrier Proteins; Cell Proliferation; Cell Survival; Cells, Cultured; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Humans; Liver Neoplasms; Membrane Proteins; Mitochondria; Molecular Structure; Naphthoquinones; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Signal Transduction; Structure-Activity Relationship; Thyroid Hormone-Binding Proteins; Thyroid Hormones | 2019 |
Eupatilin inhibits angiogenesis-mediated human hepatocellular metastasis by reducing MMP-2 and VEGF signaling.
Metastasis is responsible for the great majority of deaths in cancer patients. Matrix metalloproteinases (MMPs) have critical functions in cancer metastasis. Especially, MMP-2 and MMP-9 play a major role in tumor-cell migration and invasion. Therefore, to first find out the inhibitory effect of eupatilin on expression of MMPs in SNU182 cells, we used quantitative real-rime PCR to measure MMP-2 and MMP-9 mRNA levels. Eupatilin suppressed transcription of MMP-2 in SNU182 cells more than did the corresponding controls. Also, eupatilin significantly blocked tube formation when treated with a concentration of 3.125 or 6.25 μg/mL on human umbilical vein vascular endothelial cells (HUVECs). Eupatilin induced significant anti-angiogenic potential associated with down-regulation of hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), and phosphorylated Akt expression. Thus, tube-formation inhibition and MMP-2-mediated migration are likely to be important therapeutic targets of eupatilin in hepatocellular carcinoma metastasis. Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Dose-Response Relationship, Drug; Flavonoids; Hep G2 Cells; Human Umbilical Vein Endothelial Cells; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Liver Neoplasms; Matrix Metalloproteinase 2; Neoplasm Metastasis; Neovascularization, Pathologic; Signal Transduction; Vascular Endothelial Growth Factor A | 2018 |
Metabolic profiling study of shikonin's cytotoxic activity in the Huh7 human hepatoma cell line.
Shikonin and its enantiomer alkannin, which are natural products, have been extensively studied in vitro and in vivo for, among others, their antitumor activity. The investigation of the molecular pathways involved in their action is of interest, since they are not yet clearly defined. Metabolic profiling in cells can provide a picture of a cell's phenotype upon intervention, assisting in the elucidation of the mechanism of action. In this study, the cytotoxic effect of shikonin on a human hepatocarcinoma cell line was studied. Huh7 cells were treated with shikonin at 5 μM, and it was found that shikonin markedly inhibited cell growth. Metabolic profiling indicated alterations in the metabolic content of the cells and the culture media upon treatment, detecting the metabolic response of the cells. This study demonstrates the potential of metabolomics to improve knowledge on the mechanisms involved in shikonin's antitumor action. Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chromatography, Liquid; Humans; Liver Neoplasms; Metabolome; Metabolomics; Naphthoquinones; Signal Transduction; Tandem Mass Spectrometry | 2017 |
Shikonin potentiates the effect of arsenic trioxide against human hepatocellular carcinoma in vitro and in vivo.
Hepatocellular carcinoma (HCC) is a highly lethal malignancy mostly because of metastasis, recurrence and acquired resistance to conventional chemotherapy. Arsenic trioxide (ATO) is successfully used to treat hematological malignancies, and has been proven to trigger apoptosis in HCC cells. However, the phase II trial evaluating the efficacy and toxicity of ATO in patients with HCC showed that single-agent ATO is poorly active against HCC. Therefore, it is of great importance to develop effective chemosensitization agents to ATO. The aim of the present study was to determine whether shikonin (SHI), a natural product from the root of lithospermum erythrorhizon, could synergistically enhance the anti-HCC efficacy of ATO both in vitro and in vivo. We found that the combination of SHI and ATO exhibited synergistic anticancer efficacy and achieved greater selectivity between cancer cells and normal cells. By inducing intracellular oxidative stress, SHI potentiated ATO-induced DNA damage, followed by increased activation of endoplasmic reticulum stress. In addition, inhibition of ROS reversed the apoptosis induced by SHI and ATO, and recovered the activation of endoplasmic reticulum stress, which revealed the vital role of ROS in the synergism. Moreover, HepG2 xenograft tumor growth in nude mice was more effectively inhibited by combined treatment with SHI and ATO. These data suggest that the combination of SHI with ATO presents a promising therapeutic approach for the treatment of HCC. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Arsenic Trioxide; Arsenicals; Carcinoma, Hepatocellular; Cell Line; Cell Line, Tumor; DNA Damage; Drug Synergism; Endoplasmic Reticulum Stress; Hep G2 Cells; Humans; Liver Neoplasms; Mice, Nude; Naphthoquinones; Oxides; Xenograft Model Antitumor Assays | 2016 |
Extracellular signal-regulated kinase, receptor interacting protein, and reactive oxygen species regulate shikonin-induced autophagy in human hepatocellular carcinoma.
Shikonin, a naphthoquinone derived from the Chinese medicinal plant Lithospermum erythrorhizon, shows potential to be a cancer chemotherapeutic agent. Our previous data demonstrate that high doses (about 6 μM) of shikonin induce apoptosis in human hepatocellular carcinoma (HCC) cells. Here, we discovered that a low dose of shikonin (2.5 μM) and a short treatment time (12h) induced autophagy, as evidenced by the upregulation of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, the formation of acidic autophagic vacuoles (AVOs), and the punctate fluorescence pattern of GFP-LC3 protein. Next, we investigated the mechanism and found reactive oxygen species accumulation after shikonin treatment. The reactive oxygen species scavengers NAC and Tiron completely blocked autophagy. We further found activation of ERK by generation of reactive oxygen species and inhibition of RIP pathway, which are at least partially connected to shikonin-induced autophagy. Moreover, experiments in vivo revealed similar results: shikonin caused the accumulation of reactive oxygen species and phospho-ERK and thus induced autophagy in a tumor xenograft model. These findings suggest that shikonin is an inducer of autophagy and may be a promising clinical antitumor drug. Topics: Animals; Antineoplastic Agents; Autophagy; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Humans; Intracellular Space; Liver Neoplasms; Male; Mice; Naphthoquinones; Reactive Oxygen Species; Receptor-Interacting Protein Serine-Threonine Kinases; Xenograft Model Antitumor Assays | 2014 |
Shikonin suppresses the migratory ability of hepatocellular carcinoma cells.
Shikonin is a traditional Oriental medical herb extracted from Lithospermum erythrorhizon. Many studies have shown that shikonin possesses anticancer ability against many different cancers, including hepatocellular carcinoma (HCC). Recently, tumor metastasis has been become an important clinical obstacle. However, the effect of shikonin on metastasis by HCC is unknown. The 50% inhibitory concentration (IC50) of shikonin on HCC cells was determined by an MTT assay and the xCELLigence biosensor system. The migratory ability of HCC cells was detected by a transwell migration assay and the xCELLigence biosensor system. Matrix metalloproteinase-2 and -9 (MMP-2 and -9) expression levels were determined by Western blotting, and the activities of MMP-2 and -9 were determined by gelatin zymography. We found that IC50 values of HepJ5 and Mahlavu cells to shikonin treatment were around 2 μM. Exposure to a low dose of shikonin (0-0.4 μM) did not influence the survival of HCC cells. Interestingly, exposure to a low dose of shikonin inhibited the migratory ability on HepJ5 and Mahlavu cells. To further dissect the mechanism, we found that treatment with a low dose of shikonin reduced the activities and expression levels of MMP-2 and -9, which were correlated with the decreased cell migratory ability of HCC cells. In addition, we found a decrease of vimnetin expression, but no influence on the expression levels of N-cadherin, TWIST, or GRP78. In mechanism dissecting, we found that shikonin treatment may suppress the phosphorylation of AKT and then reduce the NF-κB (NF = nuclear factor) levels, but has no influence on the levels of c-Fos and c-Jun. Furthermore, we also found that shikonin may also reduce the phosphorylation of IκB. We concluded that a low dose of shikonin can suppress the migratory ability of HCC cells through downregulation of expression levels of vimentin and MMP-2 and -9. Our findings suggest that shikonin may be a new compound to prevent the migration of HCC cells. Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Movement; Drugs, Chinese Herbal; Endoplasmic Reticulum Chaperone BiP; Gene Expression Regulation, Neoplastic; Humans; Lithospermum; Liver Neoplasms; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Naphthoquinones; Neoplasm Metastasis | 2013 |
Shikonin derivatives protect immune organs from damage and promote immune responses in vivo in tumour-bearing mice.
Shikonin, a major component of Lithospermum erythrorhizon and Arnebia euchroma, exhibits antiinflammatory, immunomodulatory and antitumour activities. Although many recent studies have focused on the antitumour effects of shikonin, the exact mechanisms underlying its antitumour and immunomodulatory effects in tumour-bearing mice remain unclear. The aim of the present study was to investigate the antitumour and immunomodulatory effects of shikonin derivatives (ShD) in tumour-bearing mice. Swiss mice inoculated with hepatoma HepA(22) or sarcoma 180 (S(180)) cells were treated with ShD or 5-fluorouracil (5Fu). Survival time, immune organs, natural killer cell activity, lymphocytes, lymphocyte transformation and interleukin (IL)-2 production were analysed. ShD significantly prolonged the survival (median survival time prolonged by >7 days) of tumour-bearing mice in a dose-dependent manner, inhibited the growth of transplantable neoplasms (inhibitory rate, > 33%), and recovered (at [ShD] = 2.5 mg/kg/day) or increased (at [ShD] > 5 mg/kg/day) the number of CD3- and CD19-positive cells. ShD also played a role in protecting the immune organs from damage and reversed or enhanced immune responses, as noted by the nearly normal thymic structure; enlarged splenic corpuscles; and improved natural killer cell activity, lymphocyte transformation and IL-2 production in ShD-treated mice. ShD reduced the tumour load of tumour-bearing mice and protected the immune organs against tumour-induced damage and immune function impairment. Topics: Adjuvants, Immunologic; Animals; Antigens, CD19; Antineoplastic Agents, Phytogenic; Boraginaceae; Carcinoma, Hepatocellular; CD3 Complex; Dose-Response Relationship, Drug; Fluorouracil; Interleukin-2; Killer Cells, Natural; Lithospermum; Liver Neoplasms; Lymphocytes; Mice; Naphthoquinones; Phytotherapy; Plant Extracts; Sarcoma; Spleen; Thymus Gland | 2012 |
Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: A potential new treatment for hepatocellular carcinoma.
Although shikonin, a naphthoquinone derivative, has showed anti-cancer activity, its precise molecular anti-tumor mechanism remains to be elucidated. In this study, we investigated the effects of shikonin on human hepatocellular carcinoma (HCC) in vitro and in vivo. Our results showed that shikonin induced apoptosis of Huh7 and BEL7402 but not nontumorigenic cells. ROS generation was detected, and ROS scavengers completely inhibited shikonin-induced apoptosis, indicating that ROS play an essential role. Although the JNK activity was significantly elevated after shikonin treatment, JNK was not linked to apoptosis. However, downregulation of Akt and RIP1/NF-κB activity was found to be involved in shikonin-induced apoptosis. Ectopic expression of Akt or RIP1 partly abrogated the effects of shikonin, and Akt inhibitor and RIP1 inhibitor synergistically induced apoptosis in conjunction with shikonin treatment. ROS scavengers blocked shikonin-induced inactivation of Akt and RIP1/NF-κB, but Akt or RIP1/NF-κB did not regulate ROS generation, suggesting that Akt and RIP1/NF-κB signals are downstream of ROS generation. In addition, the results of xenograft experiments in mice were consistent with in vitro studies. Taken together, our data show that shikonin, which may be a promising agent in the treatment of liver cancer, induced apoptosis in HCC cells through the ROS/Akt and RIP1/NF-κB pathways. Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Carcinoma, Hepatocellular; Cell Proliferation; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Humans; Liver Neoplasms; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Molecular Structure; Naphthoquinones; Reactive Oxygen Species; Structure-Activity Relationship; Tumor Cells, Cultured | 2011 |
Shikonin inhibits the proliferation and induces the apoptosis of human HepG2 cells.
This study investigated the potential of shikonin as an anticancer agent against liver cancer and an in vitro human hepatoma cancer model system. The HepG2 cell line was the hepatoma cancer model in the present study. The inhibitory effect of shikonin on the growth of HepG2 cells was measured by MTT assay. To explore the underlying mechanism of cell growth inhibition of shikonin, the cell cycle distribution, DNA fragmentation, mitochondrial membrane potential (ΔΨm) disruption, and expression of Bax and Bcl-2 were measured in HepG2 cells. The activity of shikonin in inducing apoptosis was investigated through the detection of Annexin V signal and CD95 expression by flow cytometry and electron microscopy, respectively. Shikonin inhibited the growth of HepG2 cells in a dose-dependent manner. The IC50 value (inhibiting cell growth by 50%) was 4.30 mg/mL. Shikonin inhibited cell growth in a dose-dependent manner and blocked HepG2 cell cycle progression at the S phase. The changes in mitochondrial morphology, dose-dependently decreased in ΔΨm, were observed in different concentrations of the drug treatment group. Western blot analysis showed that cajanol inhibited Bcl-2 expression and induced Bax expression. Furthermore, we show that shikonin increases Annexin V signal and CD95 (Fas/APO) expression, resulting in apoptotic cell death of HepG2 cells. In addition, lump formation of intranuclear chromatin, pyknosis of cell nucleus, deletion of microvillus, vacuolar degeneration of mitochondria, reduction of rough endoplasmic reticulum, and resolution of free ribosome, etc., associated with apoptosis were discovered by electron microscopy in HepG2 cells after 48 h treatment. Shikonin inhibited HepG2 cells, possibly through the pathway of inducing early apoptosis, and was beneficial for restoring the apoptotic sensitivity of HepG2 cells by CD95, and should therefore be considered as a candidate agent for the prevention or treatment of human hepatoma. Topics: Annexin A5; Antineoplastic Agents; Apoptosis; bcl-2-Associated X Protein; Caspases; Cell Growth Processes; Cell Line, Tumor; Dose-Response Relationship, Drug; fas Receptor; Hep G2 Cells; Humans; Isoflavones; Liver Neoplasms; Membrane Potential, Mitochondrial; Microscopy, Electron; Mitochondria; Naphthoquinones; Proto-Oncogene Proteins c-bcl-2; S Phase; Signal Transduction | 2010 |
SH-7, a new synthesized shikonin derivative, exerting its potent antitumor activities as a topoisomerase inhibitor.
1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enylfuran-2-caroxylate (SH-7), a new naphthoquinone compound, derived from shikonin, exhibited obvious inhibitory actions on topoisomerase II (Topo II) and topoisomerase I (Topo I), which were stronger than its mother compound shikonin. Notably, the SH-7's inhibitory potency on Topo II was much stronger than that on Topo I. In addition, SH-7 significantly stabilized Topo II-DNA cleavable complex and elevated the expression of phosphorylated-H2AX. The in vitro cell-based investigation demonstrated that SH-7 displayed wide cytotoxicity in diversified cancer cell lines with the mean IC(50) value of 7.75 microM. One important finding is SH-7 displayed significant cytotoxicity in the 3 MDR cell lines, with an average IC(50) value nearly equivalent to that of the corresponding parental cell lines. The average resistance factor (RF) of SH-7 was 1.74, which was much lower than those of reference drugs VP-16 (RF 145.92), ADR (RF 105.97) and VCR (RF 197.39). Further studies illustrated that SH-7 had the marked apoptosis-inducing function on leukemia HL-60 cells, which was validated to be of mitochondria-dependence. The in vivo experiments showed that SH-7 had inhibitory effects on S-180 sarcoma implanted to mice, SMMC-7721, BEL-7402 human hepatocellular carcinoma and PC-3 human prostate cancer implanted to nude mice. Taken together, these results suggest that SH-7 induces DSBs as a Topo II inhibitor, which was crucial to activate the apoptotic process, and subsequently accounts for its both in vitro and in vivo antitumor activities. The well-defined Topo II inhibitory activity, antitumor effects particularly with its obvious anti-MDR action, better solubility and less toxicity make SH-7 as a potential antitumor drug candidate for further research and development. Topics: Animals; Antineoplastic Agents; Apoptosis; Blotting, Western; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Electrophoresis, Agar Gel; Female; Flow Cytometry; Humans; Leukemia; Liver Neoplasms; Male; Mice; Mice, Nude; Naphthoquinones; Neoplasms; Prostatic Neoplasms; Sarcoma; Topoisomerase II Inhibitors; Transplantation, Heterologous | 2006 |