shikonin and Inflammation

shikonin has been researched along with Inflammation* in 25 studies

Reviews

4 review(s) available for shikonin and Inflammation

ArticleYear
Recent advances in shikonin for the treatment of immune-related diseases: Anti-inflammatory and immunomodulatory mechanisms.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2023, Volume: 165

    Shikonin, the primary active compound found in the rhizome of the traditional Chinese medicinal herb known as "ZiCao", exhibits a diverse range of pharmacological effects. This drug has a wide range of uses, including as an anti-inflammatory, antioxidant, and anti-cancer agent. It is also effective in promoting wound healing and treating autoimmune diseases such as multiple sclerosis, diabetes, asthma, systemic lupus erythematosus, inflammatory bowel disease, psoriasis, and rheumatoid arthritis. Although shikonin has a wide range of applications, its mechanisms are still not fully understood. This review article provides a comprehensive overview of the recent advancements in the use of shikonin for the treatment of immune-related diseases. The article also delves into the anti-inflammatory and immunoregulatory mechanisms of shikonin and offers insights into the inflammation and immunopathogenesis of related diseases. Overall, this article serves as a valuable resource for researchers and clinicians working in this field. These findings not only provide significant new information on the effects and mechanisms of shikonin but also establish a foundation for the development of clinical applications in treating autoimmune diseases.

    Topics: Anti-Inflammatory Agents; Autoimmune Diseases; Humans; Inflammation; Naphthoquinones

2023
Therapeutic Effects of Shikonin on Skin Diseases: A Review.
    The American journal of Chinese medicine, 2021, Volume: 49, Issue:8

    Shikonin is one of the primary active components extracted from the dried root of

    Topics: Humans; Inflammation; Lithospermum; Naphthoquinones; Skin Diseases

2021
Pyruvate kinase M2: A simple molecule with complex functions.
    Free radical biology & medicine, 2019, 11-01, Volume: 143

    Pyruvate kinase M2 is a critical enzyme that regulates cell metabolism and growth under different physiological conditions. In its metabolic role, pyruvate kinase M2 catalyzes the last glycolytic step which converts phosphoenolpyruvate to pyruvate with the generation of ATP. Beyond this metabolic role in glycolysis, PKM2 regulates gene expression in the nucleus, phosphorylates several essential proteins that regulate major cell signaling pathways, and contribute to the redox homeostasis of cancer cells. The expression of PKM2 has been demonstrated to be significantly elevated in several types of cancer, and the overall inflammatory response. The unusual pattern of PKM2 expression inspired scientists to investigate the unrevealed functions of PKM2 and the therapeutic potential of targeting PKM2 in cancer and other disorders. Therefore, the purpose of this review is to discuss the mechanistic and therapeutic potential of targeting PKM2 with the focus on cancer metabolism, redox homeostasis, inflammation, and metabolic disorders. This review highlights and provides insight into the metabolic and non-metabolic functions of PKM2 and its relevant association with health and disease.

    Topics: Adenosine Triphosphate; Atherosclerosis; Carrier Proteins; Cell Proliferation; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Glycolysis; Homeostasis; Humans; Inflammation; Inflammatory Bowel Diseases; Insulin; Kidney Diseases; Liver; Membrane Proteins; Metabolic Diseases; Naphthoquinones; Neoplasm Metastasis; Neoplasms; Neuralgia; Oxidants; Oxidation-Reduction; Protein Isoforms; Sepsis; Signal Transduction; Thyroid Hormone-Binding Proteins; Thyroid Hormones; Tissue Distribution

2019
Cellular pharmacology studies of shikonin derivatives.
    Phytotherapy research : PTR, 2002, Volume: 16, Issue:3

    The naphthoquinone pigment, shikonin, isolated from Lithospermum erythrorhizon Sieb. et Zucc.(Boraginaceae) and its derivatives are the active components isolated from the Chinese herbal therapeutic, Zicao. Historically, Zicao root extracts have been used to treat macular eruption, measles, sore-throat, carbuncles and burns. Multiple pharmacological actions have been attributed to shikonin, e.g. antiinflammatory, antigonadotropic and anti-HIV-1 activity. In this review, several therapeutic applications of shikonin will be summarized including its pleiotropic, antiinflammatory and antitumour effects. Widely diverse and sometimes conflicting activities have been attributed to shikonin, e.g. wound healing, enhanced granuloma formation, suppression of local acute inflammatory reactions, inhibition of angiogenesis, inhibition of select chemokine ligands, inhibition of DNA topoisomerase activity, inhibition of platelet activation and antimicrobial activity. Comparison of the various reported mechanisms of action for shikonin lead us to hypothesize that shikonin is an effective inhibitor of protein-protein interaction with multiple targets in both the intracellular and extracellular compartments. This general inhibitory effect can account for the broad spectrum of shikonin biological and pharmacological activities.

    Topics: Animals; Anti-Infective Agents; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents, Phytogenic; Granuloma; Humans; Inflammation; Lithospermum; Mast Cells; Naphthoquinones; Neoplasms; Neutrophils; Phytotherapy; Plant Extracts; Platelet Aggregation Inhibitors; Prostaglandin-Endoperoxide Synthases; Respiratory Burst; Signal Transduction; Wound Healing

2002

Trials

1 trial(s) available for shikonin and Inflammation

ArticleYear
Biopolymeric film containing bioactive naphthoquinone (shikonin) in combined therapy of inflammatory destructive lesions in the buccal mucosa.
    Bulletin of experimental biology and medicine, 2013, Volume: 156, Issue:2

    Clinical morphological efficiency of local application of a new biopolymeric film was studied. The film was based on methylcellulose derivatives and contained shikonin (preparation of plant origin) and its esters isolated from Lithospermum erythrorhizon L. cell culture. Combined therapy of 30 patients (34-72 years) with erosive ulcerative lichen planus and leukoplakia of the buccal mucosa was carried out. Local application of the new drug led to more rapid pain relief, epithelialization of the inflammatory destructive foci in the buccal mucosa, and reduced the intensity of morphological signs of lesions in the studied patient population.

    Topics: Adult; Aged; Anti-Inflammatory Agents, Non-Steroidal; Biopolymers; Drugs, Chinese Herbal; Female; Humans; Inflammation; Leukoplakia, Oral; Lichen Planus, Oral; Male; Methylcellulose; Middle Aged; Mouth Mucosa; Naphthoquinones; Oral Ulcer

2013

Other Studies

20 other study(ies) available for shikonin and Inflammation

ArticleYear
Therapeutic effects of shikonin on adjuvant-induced arthritis in rats and cellular inflammation, migration and invasion of rheumatoid fibroblast-like synoviocytes via blocking the activation of Wnt/β-catenin pathway.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2023, Jul-25, Volume: 116

    Shikonin (SKN), the main bioactive component isolated from Lithospermum erythrorhizon Sieb et Zucc, has multiple activities including anti-rheumatic effect, but its specific roles and the precise mechanisms in regulating biological properties of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) are unclear and need further clarification.. This study explored the therapeutic roles of SKN on rat adjuvant-induced arthritis (AIA) and cellular inflammation, migration and invasion of TNF-α-induced RA FLS (MH7A cells), and further demonstrated the involved mechanisms.. SKN was intraperitoneally given to AIA rats and its therapeutic role was valued. The effects of SKN in vivo and in vitro on the production of pro-inflammatory factors were examined by ELISA and western blot. Wound-healing, transwell and phalloidin staining assay were carried out to evaluate the effects of SKN on TNF-α-induced migration and invasion in RA FLS. The involvement of Wnt/β-catenin pathway was checked by immunohistochemistry or immunofluorescence assay for β-catenin and western blot for pathway-related proteins.. SKN treatment in AIA rats reduced paw swelling, arthritis index and pathological damage of ankle joints, indicating its anti-arthritic effect in vivo. SKN had anti-inflammatory roles in vivo and in vitro, evidenced by inhibiting the production of pro-inflammatory factors (like IL-1β, IL-6, IL-8, TNF-α, MMP-2 and MMP-9) in sera and synovium of AIA rats, and in TNF-α-induced MH7A cells. Gelatin zymography result revealed the suppression of SKN on TNF-α-induced MMP-2 activity in vitro. Moreover, SKN inhibited TNF-α-induced migration, invasion and cytoskeletal reorganization in MH7A cells. Mechanistically, SKN suppressed the activation of Wnt/β-catenin signaling in AIA rat synovium and in TNF-α-induced MH7A cells, indicated by the reduced protein levels of Wnt1, p-GSK-3β (Ser9) and β-catenin, the raised protein level of GSK-3β and the decreased nuclear translocation of β-catenin. Interestingly, the combination of LiCl (Wnt/β-catenin agonist) canceled the therapeutic functions of SKN on cellular inflammation, migration and invasion in TNF-α-induced MH7A cells, whereas XAV939 (Wnt/β-catenin inhibitor) enhanced the therapeutic roles of SKN.. SKN showed therapeutic effects on rat AIA and cellular inflammation, migration and invasion of TNF-α-stimulated RA FLS via interrupting Wnt/β-catenin pathway.

    Topics: Animals; Arthritis, Experimental; Arthritis, Rheumatoid; beta Catenin; Cells, Cultured; Fibroblasts; Glycogen Synthase Kinase 3 beta; Inflammation; Matrix Metalloproteinase 2; Rats; Synovial Membrane; Synoviocytes; Tumor Necrosis Factor-alpha

2023
Lithospermum erythrorhizon Siebold & Zucc. extract reduces the severity of endotoxin-induced uveitis.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2023, Volume: 121

    Uveitis is an inflammatory eye condition that threatens vision, and effective anti-inflammatory treatments with minimal side effects are necessary to treat uveitis.. This study aimed to investigate the effects of Lithospermum erythrorhizon Siebold & Zucc. against endotoxin-induced uveitis in rat and mouse models.. Endotoxin-induced uveitis models of rats and mice were used to evaluate the effects of l. erythrorhizon treatment. Clinical inflammation scores and retinal thickness were assessed in the extract of l. erythrorhizon-treated rats. Histopathological examination revealed inflammatory cell infiltration into the ciliary body. Protein concentration, cellular infiltration, and prostaglandin-E2 levels were measured in the aqueous humor of the extract of l. erythrorhizon-treated rats. Protective effects of l. erythrorhizon on the anterior segment of the eye were examined in mice with endotoxin-induced uveitis. Additionally, we investigated the effect of l. erythrorhizon on the expression of pro-inflammatory cytokines [tumor necrosis factor alpha, interleukin-6, and interleukin-8] in lipopolysaccharide-stimulated THP1 human macrophages and examined the involvement of nuclear factor kappaB/activator protein 1 and interferon regulatory factor signaling pathways. Furthermore, three components of l. erythrorhizon were identified and assessed for their inhibitory effects on LPS-induced inflammation in RAW264.7 macrophage cells.. Treatment of the extract of l. erythrorhizon significantly reduced clinical inflammation scores and retinal thickening in rats with endotoxin-induced uveitis. Histopathological examination revealed decreased inflammatory cell infiltration into the ciliary body. The extract of l. erythrorhizon effectively reduced the protein concentration, cellular infiltration, and PG-E2 levels in the aqueous humor of rats with endotoxin-induced uveitis. In mice with endotoxin-induced uveitis, the extract of l. erythrorhizon demonstrated a protective effect on the anterior segment of the eye by reducing inflammation and retinal thickening. The extract of l. erythrorhizon suppressed the expression of pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin-6, and interleukin-8) in lipopolysaccharide-induced inflammation in THP1 human macrophages, by modulating nuclear factor kappaB/activator protein 1 and interferon regulatory factor signaling pathways. Moreover, shikonin, acetylshikonin, and β, β-dimethylacryloylshikonin showed dose-dependent inhibition of nitric oxide, tumor necrosis factor alpha and interleukin-6 production in RAW264.7 macrophage cells.. The extract of l. erythrorhizon is a potential therapeutic agent for uveitis management. Administration of the extract of l. erythrorhizon led to reduced inflammation, retinal thickening, and inflammatory cell infiltration in rat and mouse models of uveitis. The compounds (shikonin, acetylshikonin, and β, β-dimethylacryloylshikonin) identified in this study played crucial roles in mediating the anti-inflammatory effects of l. erythrorhizon. These findings indicate that the extract of l. erythrorhizon and its constituent compounds are promising candidates for further research and development of novel treatment modalities for uveitis.

    Topics: Animals; Anti-Inflammatory Agents; Cytokines; Endotoxins; Humans; Inflammation; Interferon Regulatory Factors; Interleukin-6; Interleukin-8; Lipopolysaccharides; Lithospermum; Mice; NF-kappa B; Rats; Transcription Factor AP-1; Tumor Necrosis Factor-alpha; Uveitis

2023
Zn-Shik-PEG nanoparticles alleviate inflammation and multi-organ damage in sepsis.
    Journal of nanobiotechnology, 2023, Nov-25, Volume: 21, Issue:1

    Topics: Humans; Inflammation; Nanoparticles; Reactive Oxygen Species; Sepsis; Zinc

2023
Shikonin Derivatives Inhibit Inflammation Processes and Modulate MAPK Signaling in Human Healthy and Osteoarthritis Chondrocytes.
    International journal of molecular sciences, 2022, Mar-21, Volume: 23, Issue:6

    Topics: Cartilage, Articular; Cells, Cultured; Chondrocytes; Humans; Inflammation; Naphthoquinones; Osteoarthritis

2022
"Shikonin inhibits microglia activation and reduces CFA-induced mechanical hyperalgesia in an animal model of pain".
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2022, Volume: 150

    Shikonin is an ointment produced from Lithospermun erythrorhizon which has been used in traditional medicine both in Europe and Asia for wound healing and is associated with anti-inflammatory properties. The goal of this work is to assess the analgesic properties of Shikonin in the CFA-induced inflammation model of pain. Rats were subjected to inflammation of the hind paw by CFA injection with a preventive injection of Shikonin and compared to either a control group or to a CFA-inflamed group with the vehicle drug solution. Inflammation of the hind paw by CFA was assessed by measurement of the dorsal to plantar diameter. Mechanical thresholds were established by means of the Von Frey filaments which are calibrated filaments that exert a defined force. Finally, the spinal cord of the studied animals was extracted to analyse the microglia population through immunohistochemistry using the specific marker Iba-1. Our results show that Shikonin reduces the paw oedema caused by CFA inflammation. Subsequently, there is a concomitant restoration of the mechanical thresholds reduced by CFA hind paw injection. Additionally, spinal microglia is activated after CFA-induced inflammation. Our results show that microglia is inhibited by Shikonin and has concomitant restoration of the mechanical thresholds. Our findings demonstrate for the first time that Shikonin inhibits microglia morphological changes and thereby ameliorates pain-like behaviour elicited by mechanical stimulation.

    Topics: Animals; Disease Models, Animal; Hyperalgesia; Inflammation; Microglia; Naphthoquinones; Pain; Rats; Spinal Cord

2022
Natural shikonin and acetyl-shikonin improve intestinal microbial and protein composition to alleviate colitis-associated colorectal cancer.
    International immunopharmacology, 2022, Volume: 111

    Colorectal cancer (CRC) and inflammatory bowel disease (IBD) are the most common diseases of human digestive system. Nowadays, the influence of the inflammatory microenvironment on tumorigenesis has become a new direction, and the exploration of relative molecular mechanism will facilitate the discovery and identification of novel potential anti-cancer molecules.. Natural shikonin (SK) and acetyl-shikonin (acetyl-SK) was administered to azoxymethane (AOM)/dextran sodium sulphate (DSS)-induced colitis-associated colorectal cancer (CAC) mice model by gavage to investigate their therapeutic effects. Moreover, fresh feces and colon tissues were collected for determining the function of SK and acetyl-SK on the gut microbes and protein expression, respectively.. Both SK and acetyl-SK decreased AOM/DSS-induced CAC, and regulated the intestinal flora structure in CAC mouse model. They, especially SK, improved species richness, evenness and diversity of intestinal flora, recovered the upregulated ratio of Firmicutes to Bacteroidota (F/B ratio) which symbolizes gut microbiota dysbiosis. SK and its derivative increased the beneficial bacteria g__norank_f__Muribaculaceae, Lactobacillus, Lachnospiraceae_NK4A136_Group, and reduced those harmful ones including Ileibacterium and Coriobacteriaceae UCG-002. Notably, AOM/DSS caused significant increase in the abundance of Ileibaterium valens and g__norank_f__norank_o__Clostridia_UCG-014, which were not previously reported in studies of colonic inflammation or cancer, and the disorder was reversed by 20 mg/kg of SK. In our current study, the action of SK and acetyl-SK is dose-dependent, and 20 mg/kg SK exhibited the most effective functions, even better than the positive drug mesalazine. Moreover, differential proteomics and ELISA results showed that SK could recover the increase of pro-inflammatory cytokines (including IL-1β, IL-6 and TNF-α), the upregulation of pyruvate kinase isozyme type M2 (PKM2) and some other proteins (mainly concentrated in transcriptional mis-regulation in cancer and IL-17 signaling pathways), and the downregulation of Aldh1b1-Acc3-Maoa and Μgt2b34-Aldh1a1-Aldh1a7 involved in Wnt/β-catenin signaling pathway.. Our study identified SK and acetyl-SK, especially SK, as potential preventive agents for CAC through regulating both gut microbes and pathways involved in inflammation and cancer such as Wnt/β-catenin signaling pathway.

    Topics: Animals; Azoxymethane; Bacteroidetes; Colitis; Colitis-Associated Neoplasms; Colorectal Neoplasms; Dextran Sulfate; Disease Models, Animal; Firmicutes; Humans; Inflammation; Mice; Mice, Inbred C57BL; Naphthoquinones; Tumor Microenvironment

2022
Shikonin ameliorates lipoteichoic acid‑induced acute lung injury via promotion of neutrophil apoptosis.
    Molecular medicine reports, 2021, Volume: 23, Issue:2

    Shikonin is the major active component in

    Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Bronchoalveolar Lavage Fluid; Caspase 3; Cytokines; Disease Models, Animal; DNA Fragmentation; Inflammation; Lipopolysaccharides; Male; Mice, Inbred C57BL; Myeloid Cell Leukemia Sequence 1 Protein; Naphthoquinones; Neutrophil Infiltration; Neutrophils; Poly(ADP-ribose) Polymerases; Teichoic Acids; Tumor Suppressor Protein p53

2021
Anti-angiogenic effect of Shikonin in rheumatoid arthritis by downregulating PI3K/AKT and MAPKs signaling pathways.
    Journal of ethnopharmacology, 2020, Oct-05, Volume: 260

    Zicao is the dried root of Lithospermum erythrorhizon Sieb, et Zucc, Arnebia euchroma (Royle) Johnst, or Arnebia guttata Bunge and commonly used to treat viral infection, inflammation, arthritis and cancer in China.Shikonin (SKN) is a major active chemical component isolated from zicao. Previous research showed that SKN has anti-inflammatory, immunomodulatory and analgesic effects, and inhibits the development of arthritis and the condition of collagen arthritis (CIA) mice; nevertheless, its role in the angiogenesis of rheumatoid arthritis (RA) has not been elucidated.. The purpose of this study was to investigate the antiangiogenic activity of SKN in CIA rats and various angiogenesis models.. The anti-arthritic effect of SKN on CIA rats was tested by arthritis score, arthritis incidence, radiological observation and histopathology evaluation of inflamed joints. Vessel density evaluated with CD31 immunohistochemistry/immunofluorescence in joint synovial membrane tissues of CIA rats, chick chorioallantoic membrane assay, rat aortic ring assay, and the migration, invasion, adhesion and tube formation of human umbilical vein endothelial (HUVEC) cells induced by tumor necrosis factor (TNF)-α were used to measured the antiangiogenenic activity of SKN. Moreover, the effect of SKN on the expression of angiogenic mediators, such as vascular endothelial growth factor (VEGF), VEGFR2, TNF-α, interleukin (IL)-1β, platelet derived growth factor (PDGF) and transforming growth factor (TGF)-β in sera and joint synovia of rats, and in TNF-α-induced MH7A/HUVEC cells were measured by immunohistochemistry, enzyme linked immunosorbent assay, Western blot and/or real-time polymerase chain reaction (PCR). Through the analysis of protein and mRNA levels of phosphoinositide 3-kinase (PI3K), Akt and PTEN, and the autophosphorylation of ERK1/2, JNK and p38 in joint synovia of rats and in TNF-α-induced HUVEC cells, the molecular mechanism of its inhibition was elucidated by using Western blot and/or real-time PCR.. These findings indicate for the first time that SKN has the anti-angiogenic effect in RA in vivo, ex vivo and in vitro by interrupting the PI3K/AKT and MAPKs signaling pathways.

    Topics: Angiogenesis Inhibitors; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arthritis, Experimental; Arthritis, Rheumatoid; Chick Embryo; Chorioallantoic Membrane; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Male; MAP Kinase Signaling System; Naphthoquinones; Neovascularization, Pathologic; Phosphatidylinositol 3-Kinase; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley

2020
Regulation of glycolysis and the Warburg effect in wound healing.
    JCI insight, 2020, 09-03, Volume: 5, Issue:17

    One of the most significant adverse postburn responses is abnormal scar formation, such as keloids. Despite its prolificacy, the underlying pathophysiology of keloid development is unknown. We recently demonstrated that NLRP3 inflammasome, the master regulator of inflammatory and metabolic responses (e.g., aerobic glycolysis), is essential for physiological wound healing. Therefore, burn patients who develop keloids may exhibit altered immunometabolic responses at the site of injury, which interferes with normal healing and portends keloid development. Here, we confirmed keloid NLRP3 activation (cleaved caspase-1 [P < 0.05], IL-1β [P < 0.05], IL-18 [P < 0.01]) and upregulation in Glut1 (P < 0.001) and glycolytic enzymes. Burn skin similarly displayed enhanced glycolysis and Glut1 expression (P < 0.01). However, Glut1 was significantly higher in keloid compared with nonkeloid burn patients (>2 SD above mean). Targeting aberrant glucose metabolism with shikonin, a pyruvate kinase M2 inhibitor, dampened NLRP3-mediated inflammation (cleaved caspase-1 [P < 0.05], IL-1β [P < 0.01]) and improved healing in vivo. In summary, burn skin exhibited evidence of Warburg-like metabolism, similar to keloids. Targeting this altered metabolism could change the trajectory toward normal scarring, indicating the clinical possibility of shikonin for abnormal scar prevention.

    Topics: Adult; Animals; Anti-Inflammatory Agents, Non-Steroidal; Burns; Case-Control Studies; Female; Glucose Transporter Type 1; Glycolysis; Humans; Inflammasomes; Inflammation; Inflammation Mediators; Keloid; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Middle Aged; Naphthoquinones; NLR Family, Pyrin Domain-Containing 3 Protein; Pyruvate Kinase; Skin; Wound Healing

2020
Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2019, Volume: 112

    Acetaminophen (APAP) overdose causes acute liver injury and leads to fatal liver damage. However, the therapies are quite limited. Shikonin is a natural product with antioxidant and anti-inflammatory activities. In the present study, the hepatoprotective effects and the underlying mechanisms of shikonin in APAP-induced hepatotoxicity in vivo and in vitro were investigated. APAP-induced acute liver injury and shikonin pretreatment models were established in vivo and in vitro, as evidenced by serum hepatic enzymes, histological changes, oxidative stress indicators and proinflammatory cytokines. The results revealed that shikonin pretreatment prevented the elevation of serum alanine transaminase (ALT), aspartate transaminase (AST) and lactate dehydrogenase (LDH) levels and markedly reduced APAP-induced histological alterations in liver tissues. Additionally, shikonin restored superoxide dismutase (SOD) expression and glutathione (GSH) content in line with the blockade of oxidative stress. The changes in gene expression involved in oxidative stress including methionine sulfoxide reductase (such as MsrA and MsrB1), heme oxygenase-1 (HO-1), SOD2 and cytochrome P450 2E1 (CYP2E1), were markedly reversed after shikonin therapy. Furthermore, shikonin markedly attenuated the APAP-induced production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and suppressed the expression of genes related to inflammation. In AML-12 cells, shikonin pretreatment decreased APAP-induced cytotoxicity as measured by CCK-8 assay and LDH release. The changes in gene expression involved in oxidative stress and the inflammatory response were consistent with those in mouse livers. This study indicated that shikonin attenuated APAP-induced acute liver injury via inhibiting oxidative stress and inflammatory responses in vivo and in vitro. These findings offer new insights into the potential therapy for APAP hepatotoxicity.

    Topics: Acetaminophen; Analgesics, Non-Narcotic; Animals; Anti-Inflammatory Agents, Non-Steroidal; Chemical and Drug Induced Liver Injury; Inflammation; Male; Mice; Mice, Inbred BALB C; Naphthoquinones; Oxidative Stress

2019
Shikonin inhibits myeloid differentiation protein 2 to prevent LPS-induced acute lung injury.
    British journal of pharmacology, 2018, Volume: 175, Issue:5

    Acute lung injury (ALI) is a challenging clinical syndrome, which manifests as an acute inflammatory response. Myeloid differentiation protein 2 (MD2) has an important role in mediating LPS-induced inflammation. Currently, there are no effective molecular-based therapies for ALI or viable biomarkers for predicting the severity of disease. Recent preclinical studies have shown that shikonin, a natural naphthoquinone, prevents LPS-induced inflammation. However, little is known about the underlying mechanisms.. The binding affinity of shikonin to MD2 was analysed using computer docking, surface plasmon resonance analysis and elisa. In vitro, the anti-inflammatory effect and mechanism of shikonin were investigated through elisa, real-time quantitative reverse transcription PCR, Western blotting and immunoprecipitation assay. In vivo, lung injury was induced by intratracheal administration of LPS and assessed by changes in the histopathological and inflammatory markers. The underlying mechanisms were investigated by immunoprecipitation in lung tissue.. Shikonin directly bound to MD2 and interfered with the activation of toll-like receptor 4 (TLR4) induced by LPS. In cultured macrophages, shikonin inhibited TLR4 signalling and pro-inflammatory cytokine production. These effects were produced through suppression of key signalling proteins including the NF-κB and the MAPK pathway. We also showed that shikonin inhibits MD2-TLR4 complex formation and reduces LPS-induced inflammatory responses in a mouse model of ALI.. Our studies have uncovered the mechanism underlying the biological activity of shikonin in ALI and suggest that the targeting of MD2 may prove to be beneficial as a treatment option for this condition.

    Topics: Acute Lung Injury; Animals; Cytokines; Humans; Inflammation; Lipopolysaccharides; Lymphocyte Antigen 96; MAP Kinase Signaling System; Mice; Molecular Docking Simulation; Naphthoquinones; Toll-Like Receptors

2018
Gromwell (Lithospermum erythrorhizon) root extract protects against glycation and related inflammatory and oxidative stress while offering UV absorption capability.
    Experimental dermatology, 2018, Volume: 27, Issue:9

    Glycation and advanced glycation end products (AGE) damage skin which is compounded by AGE-induced oxidative stress and inflammation. Lip and facial skin could be susceptible to glycation damage as they are chronically stressed. As Gromwell (Lithospermum erythrorhizon) root (GR) has an extensive traditional medicine history that includes providing multiple skin benefits, our objective was to determine whether GR extract and its base naphthoquinone, shikonin, might protect skin by inhibiting glycation, increasing oxidative defenses, suppressing inflammatory responses and offering ultraviolet (UV) absorptive potential in lip and facial cosmetic matrices. We show GR extract and shikonin dose-dependently inhibited glycation and enhanced oxidative defenses through nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element activation. Inflammatory targets, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and tumor necrosis factor alpha, were suppressed by GR extract and shikonin. Glyoxalase 1 (GLO1) and glutathione synthesis genes were significantly upregulated by GR extract and shikonin. GR extract boosted higher wavelength UV absorption in select cosmetic matrices. Rationale for the use of GR extract and shikonin are supported by our research. By inhibiting glycation, modulating oxidative stress, suppressing inflammation and UV-absorptive properties, GR extract and shikonin potentially offer multiple skin benefits.

    Topics: Absorption, Radiation; Anti-Inflammatory Agents, Non-Steroidal; Cosmetics; Glutathione; Glycation End Products, Advanced; Hep G2 Cells; Humans; Inflammation; Lactoylglutathione Lyase; Lithospermum; Naphthoquinones; NF-E2-Related Factor 2; NF-kappa B; Oxidative Stress; Plant Extracts; Plant Roots; Tumor Necrosis Factor-alpha; Ultraviolet Rays; Up-Regulation

2018
Shikonin changes the lipopolysaccharide-induced expression of inflammation-related genes in macrophages.
    Journal of natural medicines, 2017, Volume: 71, Issue:4

    We aimed to find candidate molecules possibly involved in the anti-inflammatory activity of shikonin (active compound of "Shikon") by analyzing its effects on gene expression of lipopolysaccharide (LPS)-treated THP-1 macrophages. Polysome-associated mRNAs (those expected to be under translation: translatome) from cells treated with LPS alone (LPS: 5 µg/mL), shikonin alone (S: 100 nM), or LPS plus shikonin (LPS&S) for 3 h were analyzed by DNA microarray followed by detection of enriched pathways/gene ontologies using the tools of the STRING database. Candidate genes in enriched pathways in the comparison of LPS&S cells vs. LPS cells were analyzed by reverse-transcription quantitative real-time PCR (RT-qPCR; 1, 2, and 3 h). DNA microarray showed shikonin significantly influences gene expression. Gene expression changes between LPS&S cells and LPS cells were compared to detect relevant proteins and/or mRNAs underlying its anti-inflammatory effects: shikonin downregulated pathways which were upregulated in LPS cells, for example, 'innate immune response'. Within changed pathways, three genes were selected for RT-qPCR analyses as key candidates influencing inflammatory responses: CYBA (component of the superoxide-generating Nox2 enzyme), GSK3B (controller of cell responses after toll-like receptor stimulation), and EIF4E (a key factor of the eukaryotic translation initiation factor 4F complex that regulates abundance of other proteins involved in immune functions). All three mRNAs were decreased at 2 h, and CYBA continued low at 3 h relative to LPS cells. Given that shikonin decreased the expression of CYBA gene of Nox2, in addition to the direct inhibition of the Nox2 activity that we have previously shown, it is suggested that one of its anti-inflammatory mechanisms could be attenuation of oxidative stress.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Differentiation; Gene Expression; Humans; Inflammation; Lipopolysaccharides; Macrophages; Naphthoquinones

2017
Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2017, Volume: 93

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future.

    Topics: Animals; Apoptosis; Cardiomyopathies; Caspase 3; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Fibrosis; Gene Expression Regulation; Heart; Heart Failure; HSP70 Heat-Shock Proteins; Inflammation; Isoproterenol; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; Myocardium; Myocytes, Cardiac; Naphthoquinones; NF-kappa B

2017
Shikonin Inhibits Inflammatory Cytokine Production in Human Periodontal Ligament Cells.
    Inflammation, 2016, Volume: 39, Issue:3

    Shikonin, which is derived from Lithospermum erythrorhizon, a herb used in traditional medicine, has long been considered to be a useful treatment for various diseases in traditional oriental medicine. Shikonin has recently been reported to have several pharmacological properties, e.g., it has anti-microbial, anti-tumor, and anti-inflammatory effects. The aim of this study was to examine whether shikonin is able to influence the production of interleukin (IL)-6, IL-8, and/or chemokine C-C motif ligand (CCL)20, which contribute to the pathogenesis of periodontal disease, in human periodontal ligament cells (HPDLC). The production levels of IL-6, IL-8, and CCL20 in HPDLC were determined using an ELISA. Western blot analysis was used to detect nuclear factor kappa B (NF-κB) pathway activation in HPDLC. Shikonin prevented IL-1β- or tumor necrosis factor (TNF)-α-mediated IL-6, IL-8, and CCL20 production in HPDLC. Moreover, we found that shikonin suppressed the phosphorylation and degradation of inhibitor of kappa B-alpha (IκB-α) in IL-1β- or TNF-α-stimulated HPDLC. These findings suggest that shikonin could have direct beneficial effects against periodontal disease by reducing IL-6, IL-8, and CCL20 production in periodontal lesions.

    Topics: Anti-Inflammatory Agents, Non-Steroidal; Cells, Cultured; Chemokine CCL20; Cytokines; Humans; Inflammation; Interleukin-6; Interleukin-8; Naphthoquinones; Periodontal Diseases; Periodontal Ligament

2016
Shikonin inhibits inflammatory responses in rabbit chondrocytes and shows chondroprotection in osteoarthritic rabbit knee.
    International immunopharmacology, 2015, Volume: 29, Issue:2

    Shikonin, a natural product from Lithospermum erythrorhizon, exerts a wide range of anti-inflammatory actions both in vitro and in vivo. Matrix metalloproteinases (MMPs) have long been considered as the major catabolic enzymes involved in osteoarthritis (OA) cartilage erosion. Here, we investigated the anti-inflammatory and effects of shikonin on MMPs in both IL-1β induced rabbit chondrocytes and the experimental rabbit OA model induced by anterior cruciate ligament (ACL) transection and evaluated the potential involvement of nuclear factor kappa B (NF-κB) in the processes. In vitro, rabbit chondrocytes were cultured and pretreated with shikonin (0, 1, 5, 10μM) for 1h (h) with or without IL-1β (10ng/ml) for 24h. The expression of MMPs (MMP-1, MMP-3 and MMP-13) and tissue inhibitors of metalloproteinase-1 (TIMP-1) at mRNA and protein levels were determined by quantitative real-time PCR and ELISA respectively. NF-κB related signaling molecules were investigated by Western blotting. In vivo study, the effects of shikonin on MMPs and TIMP-1 were determined at the gene level and the cartilage damage was evaluated at the histological level after the rabbits sacrificed. We found that shikonin significantly reversed the elevated expression of MMP-1, MMP-3 and MMP-13 and the reduced expression of TIMP-1 at both gene and protein levels in IL-1β induced chondrocytes. Additionally, the reduction of IκBα and the activation of NF-κB p65 induced by IL-1β were subsided by shikonin in rabbit chondrocytes. In vivo, both the cartilage damage and the elevated expression of MMP-1, MMP-3 and MMP-13 and the decreased expression of TIMP-1 were ameliorated in shikonin intra-articular injection knees compared to vehicle knees. Our findings indicated that shikonin have anti-inflammatory and chondro-protective effects and may be a potential therapeutic agent for the treatment of OA.

    Topics: Animals; Cartilage; Cell Survival; Chondrocytes; Gene Expression Regulation; I-kappa B Kinase; Inflammation; Interleukin-1beta; Male; Matrix Metalloproteinases; Naphthoquinones; NF-kappa B; Osteoarthritis; Rabbits; Tissue Inhibitor of Metalloproteinase-1

2015
Shikonin extracted from medicinal Chinese herbs exerts anti-inflammatory effect via proteasome inhibition.
    European journal of pharmacology, 2011, May-11, Volume: 658, Issue:2-3

    Shikonin, extracted from medicinal Chinese herb (Lithospermum erythrorhizo), was reported to exert anti-inflammatory and anti-cancer effects both in vitro and in vivo. We have found that proteasome was a molecular target of shikonin in tumor cells, but whether shikonin targets macrophage proteasome needs to be investigated. In the current study, we report that shikonin inhibited inflammation in mouse models as efficiently as dexamethasone. Shikonin at 4 μM reduced the Lipopolysaccharides (LPS)-mediated TNFα release in rat primary macrophage cultures, and blocked the translocation of p65-NF-κB from the cytoplasm to the nucleus, associated with decreased proteasomal activity. Consistently, shikonin accumulated IκB-α, an inhibitor of NF-κB, and ubiquitinated proteins in rat primary macrophage cultures, demonstrating that the proteasome is a target of shikonin under inflammatory conditions. Shikonin also induced macrophage cell apoptosis and cell death. These results demonstrate for the first time that proteasome inhibition by shikonin contributes to its anti-inflammatory effect. The novel finding about macrophage proteasome as a target of shikonin suggests that this medicinal compound has great potential to be developed into an anti-inflammatory agent.

    Topics: Active Transport, Cell Nucleus; Animals; Anti-Inflammatory Agents; Capillary Permeability; Cell Death; Cell Nucleus; Cytoplasm; Drugs, Chinese Herbal; Ear Auricle; Inflammation; Lithospermum; Macrophages; Mice; Naphthoquinones; NF-kappa B; Protease Inhibitors; Proteasome Inhibitors; Rats; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha

2011
Shikonin reduces oedema induced by phorbol ester by interfering with IkappaBalpha degradation thus inhibiting translocation of NF-kappaB to the nucleus.
    British journal of pharmacology, 2010, Volume: 160, Issue:2

    In the present paper we studied the effect of shikonin on ear oedema induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), and determined the mechanisms through which shikonin might exert its topical anti-inflammatory action.. Acute ear oedema was induced in mice by topical application of TPA. The in vitro assays used macrophages RAW 264.7 cells stimulated with lipopolysaccharide. Cyclooxygenase-2, inducible nitric oxide synthase, protein kinase Calpha, extracellular signal-regulated protein kinase (ERK), phosphorylated ERK (pERK), c-Jun N-terminal kinase (JNK), pJNK, p38, p-p38, p65, p-p65, inhibitor protein of nuclear factor-kappaB (NF-kappaB) (IkappaBalpha) and pIkappaBalpha were measured by Western blotting, activation and binding of NF-kappaB to DNA was detected by reporter gene and electrophoretic mobility shift assay, respectively, and NF-kappaB p65 localization was detected by immunocytochemistry.. Shikonin reduced the oedema (inhibitory dose 50 = 1.0 mg per ear), the expression of cyclooxygenase-2 (70%) and of inducible nitric oxide synthase (100%) in vivo. It significantly decreased TPA-induced translocation of protein kinase Calpha, the phosphorylation and activation of ERK, the nuclear translocation of NF-kappaB and the TPA-induced NF-kappaB-DNA-binding activity in mouse skin. Moreover, in RAW 264.7 cells, shikonin significantly inhibited the binding of NF-kappaB to DNA in a dose-dependent manner and the nuclear translocation of p65.. Shikonin exerted its topical anti-inflammatory action by interfering with the degradation of IkappaBalpha, thus inhibiting the activation of NF-kappaB.

    Topics: Administration, Topical; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Line; Cell Nucleus; Disease Models, Animal; Dose-Response Relationship, Drug; Edema; Female; I-kappa B Proteins; Inflammation; Inhibitory Concentration 50; Macrophages; Mice; Naphthoquinones; NF-kappa B; NF-KappaB Inhibitor alpha; Phosphorylation; Protein Transport; Tetradecanoylphorbol Acetate

2010
Shikonin inhibits maturation of bone marrow-derived dendritic cells and suppresses allergic airway inflammation in a murine model of asthma.
    British journal of pharmacology, 2010, Volume: 161, Issue:7

    Shikonin exhibits a wide range of anti-inflammatory actions. Here, we assessed its effects on maturation of murine bone marrow-derived dendritic cells (BM-DCs) and on allergic reactions in a murine model of asthma.. Cultured murine BM-DCs were used to investigate the effects of shikonin on expression of cell surface markers and their stimulation of T-cell proliferation and cytokine production. The therapeutic potential of shikonin was evaluated in a model of allergic airway disease.. Shikonin dose-dependently inhibited expression of major histocompatibility complex class II, CD80, CD86, CCR7 and OX40L on BM-DCs, induced by a mixture of ovalbumin (OVA; 100µg·mL(-1) ) and thymic stromal lymphopoietin (TSLP; 20ng·mL(-1) ). Shikonin-treated BM-DCs were poor stimulators of CD4(+) T lymphocyte and induced lower levels of interleukin (IL)-4, IL-5, IL-13 and tumour necrosis factor (TNF)-α release by responding T-cells. After intratracheal instillation of shikonin in OVA-immunized mice, OVA challenge induced lower IL-4, IL-5, IL-13, TNF-α and eotaxin release in bronchial alveolar lavage fluid, lower IL-4 and IL-5 production in lung cells and mediastinal lymph node cells and attenuated OVA-induced lung eosinophilia and airway hyperresponsiveness.. Shikonin effectively suppressed OVA + TSLP-induced BM-DC maturation in vitro and inhibited allergic inflammation and airway hyperresponsiveness in a murine model of asthma, showing good potential as a treatment for allergic asthma. Also, our model provides a novel platform for screening drugs for allergic diseases.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Asthma; Bone Marrow Cells; Bronchoalveolar Lavage Fluid; Cytokines; Dendritic Cells; Drugs, Chinese Herbal; Female; Inflammation; Interleukin-13; Interleukin-4; Interleukin-5; Lung; Mice; Mice, Inbred BALB C; Naphthoquinones; Ovalbumin; Thymic Stromal Lymphopoietin; Tumor Necrosis Factor-alpha

2010
Shikonins, phytocompounds from Lithospermum erythrorhizon, inhibit the transcriptional activation of human tumor necrosis factor alpha promoter in vivo.
    The Journal of biological chemistry, 2004, Feb-13, Volume: 279, Issue:7

    Tumor necrosis factor alpha (TNF-alpha) contributes to the pathogenesis of both acute and chronic inflammatory diseases and has been a target for the development of new anti-inflammatory drugs. Shikonins, the naphthoquinone pigments present in the root tissues of Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae), have been reported to exert anti-inflammatory effects both in vitro and in vivo. In this study, we evaluated the effects of shikonin and its derivatives on the transcriptional activation of human TNF-alpha promoter in a gene gun-transfected mouse skin system by using a luciferase reporter gene assay. The crude plant extract of L. erythrorhizon as well as derived individual compounds shikonin, isobutyryl shikonin, acetyl shikonin, dimethylacryl shikonin and isovaleryl shikonin showed significant dose-dependent inhibition of TNF-alpha promoter activation. Among the tested compounds, shikonin and isobutyryl shikonin exhibited the highest inhibition of TNF-alpha promoter activation and also showed significant suppression of transgenic human TNF-alpha mRNA expression and protein production. We demonstrated that shikonin-inhibitory response was retained in the core TNF-alpha promoter region containing the TATA box and a 48-bp downstream sequence relative to the transcription start site. Further our results indicated that shikonin suppressed the basal transcription and activator-regulated transcription of TNF-alpha by inhibiting the binding of transcription factor IID protein complex (TATA box-binding protein) to TATA box. These in vivo results suggest that shikonins inhibit the transcriptional activation of the human TNF-alpha promoter through interference with the basal transcription machinery. Thus, shikonins may have clinical potential as anti-inflammatory therapeutics.

    Topics: Animals; Anti-Inflammatory Agents; Betamethasone; Blotting, Western; Dose-Response Relationship, Drug; Enzyme-Linked Immunosorbent Assay; Female; Gene Transfer Techniques; Humans; Hydrocortisone; Inflammation; Lithospermum; Luciferases; Mice; Mice, Inbred BALB C; Models, Chemical; Naphthoquinones; NF-kappa B; Plasmids; Promoter Regions, Genetic; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Skin; Time Factors; Transcription Factor RelA; Transcription, Genetic; Transcriptional Activation; Transfection; Transgenes; Tumor Necrosis Factor-alpha

2004
chemdatabank.com