shikonin has been researched along with Glioblastoma* in 7 studies
7 other study(ies) available for shikonin and Glioblastoma
Article | Year |
---|---|
Local administration of shikonin improved the overall survival in orthotopic murine glioblastoma models with temozolomide resistance.
Glioblastoma is a type of intracranial malignancy. Shikonin, a Chinese traditional medicine, has been shown to have anti-tumor efficacy toward human glioblastoma cells in vitro. However, shikonin cannot easily cross the blood-brain barrier. To address this issue, we evaluated the anti-tumor effects of direct intracranial infusion of shikonin in in vivo orthotopic syngeneic murine glioblastoma models using C57BL/6 mice.. The cytotoxic effects of shikonin against murine glioblastoma cells, SB28 and CT-2A, were reported resistance to temozolomide, were evaluated using an allophycocyanin-conjugated annexin V and propidium iodide assay with flow cytometry. Impedance-based real-time cell analysis (RTCA) was used to analyze the inhibitory effects of shikonin on growth and proliferation. To evaluate the anti-tumor activity of shikonin in vivo, we used orthotopic syngeneic murine glioblastoma models with SB28 and CT-2A cells.. In flow cytometry-based cytotoxic assays, shikonin induced apoptosis. RTCA indicated that shikonin decreased the cell index of murine glioblastoma cells, SB28 and CT-2A, in a dose-dependent manner (p < 0.0001 for both cell lines), while temozolomide did not (p = 0.91 and 0.82, respectively). In murine glioblastoma models, SB28 and CT-2A, direct intracranial infusion of shikonin, as a local chemotherapy, improved the overall survival of mice in a dose-dependent manner compared with control groups (p < 0.0001 and p = 0.02, respectively). While temozolomide did not (p = 0.48 and 0.52, respectively).. The direct intracranial infusion of shikonin has potential as a local therapy for patients with glioblastoma. Topics: Animals; Antineoplastic Agents; Brain Neoplasms; Cell Line, Tumor; Glioblastoma; Humans; Mice; Mice, Inbred C57BL; Naphthoquinones; Temozolomide | 2023 |
The role of Shikonin in improving 5-aminolevulinic acid-based photodynamic therapy and chemotherapy on glioblastoma stem cells.
Glioblastoma multiforme is a malignant neoplasia with a median survival of less than two years and without satisfactory therapeutic options. The so-called glioblastoma stem cells escape the established radio- and chemotherapies and lead to tumor recurrence in most cases. The alkaloid Shikonin with its various anti stem cell properties and the interstitial photodynamic therapy with 5-aminolevulinic acid seem to be promising new options in the therapy of glioblastoma. In this study, in vitro investigations were performed to observe the influence of Shikonin on viability, proliferation, induction of apoptosis and the capability of forming tumor spheres in U-87 MG and the primary glioblastoma cell line GB14. The combined effect with the chemotherapeutic temozolomide and photodynamic treatment on the mRNA expression of glioma specific stem cell markers and further examined intracellular protoporphyrin IX accumulation under Shikonin treatment was analyzed. Shikonin effectively inhibited the capability of forming tumor spheres and enhanced temozolomide effectiveness in the reduction of proliferation and in the induction of apoptosis. Additionally, Shikonin increased the mRNA expression of the tumor suppressing Neurofibromatosis type 1 (NF1) gene and showed modulating effects on intracellular protoporphyrin IX. Topics: Aminolevulinic Acid; Brain Neoplasms; Cell Line, Tumor; Glioblastoma; Humans; Naphthoquinones; Neoplasm Recurrence, Local; Photochemotherapy; RNA, Messenger; Temozolomide | 2022 |
Dual treatment with shikonin and temozolomide reduces glioblastoma tumor growth, migration and glial-to-mesenchymal transition.
Glioblastomas (GBM) comprise 17% of all primary brain tumors. These tumors are extremely aggressive due to their infiltrative capacity and chemoresistance, with glial-to-mesenchymal transition (GMT) proteins playing a prominent role in tumor invasion. One compound that has recently been used to reduce the expression of these proteins is shikonin (SHK), a naphthoquinone with anti-tumor properties. Temozolomide (TMZ), the most commonly used chemotherapeutic agent in GBM treatment, has so far not been studied in combination with SHK. Here, we investigated the combined effects of these two drugs on the proliferation and motility of GBM-derived cells.. The cytotoxic and proliferative effects of SHK and TMZ on human GBM-derived cells were tested using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), Ki67 staining and BrdU incorporation assays. The migration capacities of these cells were evaluated using a scratch wound assay. The expression levels of β3 integrin, metalloproteinases (MMPs) and GMT-associated proteins were determined by Western blotting and immunocytochemistry.. We found that GBM-derived cells treated with a combination of SHK and TMZ showed decreases in their proliferation and migration capacities. These decreases were followed by the suppression of GMT through a reduction of β3 integrin, MMP-2, MMP-9, Slug and vimentin expression via inactivation of PI3K/AKT signaling.. From our results we conclude that dual treatment with SHK and TMZ may constitute a powerful new tool for GBM treatment by reducing therapy resistance and tumor recurrence. Topics: Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Cell Proliferation; Dacarbazine; Drug Resistance, Neoplasm; Epithelial-Mesenchymal Transition; Glioblastoma; Humans; Naphthoquinones; Temozolomide | 2017 |
Shikonin and its derivatives inhibit the epidermal growth factor receptor signaling and synergistically kill glioblastoma cells in combination with erlotinib.
Overexpression and mutation of the epidermal growth factor receptor (EGFR) gene play a causal role in tumorigenesis and resistance to treatment of glioblastoma (GBM). EGFR inhibitors such as erlotinib are currently used for the treatment of GBM; however, their efficacy has been limited due to drug resistance. New treatment strategies are therefore urgently needed. Shikonin, a natural naphthoquinone, induces both apoptosis and necroptosis in human glioma cells, but the effectiveness of erlotinib-shikonin combination treatment as well as the underlying molecular mechanisms is unknown yet. In this study, we investigated erlotinib in combination with shikonin and 14 shikonin derivatives in parental U87MG and transfected U87MG.ΔEGFR GBM cells. Most of the shikonin derivatives revealed strong cytotoxicity. Shikonin together with five other derivatives, namely deoxyshikonin, isobutyrylshikonin, acetylshikonin, β,β-dimethylacrylshikonin and acetylalkannin showed synergistic cytotoxicity toward U87MG.ΔEGFR in combination with erlotinib. Moreover, the combined cytotoxic effect of shikonin and erlotinib was further confirmed with another three EGFR-expressing cell lines, BS153, A431 and DK-MG. Shikonin not only dose-dependently inhibited EGFR phosphorylation and decreased phosphorylation of EGFR downstream molecules, including AKT, P44/42MAPK and PLCγ1, but also together with erlotinib synergistically inhibited ΔEGFR phosphorylation in U87MG.ΔEGFR cells as determined by Loewe additivity and Bliss independence drug interaction models. These results suggest that the combination of erlotinib with shikonin or its derivatives might be a potential strategy to overcome drug resistance to erlotinib. Topics: Anthraquinones; Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Drug Synergism; ErbB Receptors; Erlotinib Hydrochloride; Glioblastoma; Humans; Mitogen-Activated Protein Kinases; Naphthoquinones; Phosphorylation; Proto-Oncogene Proteins c-akt; Quinazolines; Signal Transduction | 2015 |
Inhibition of NADPH Oxidase-4 Potentiates 2-Deoxy-D-Glucose-Induced Suppression of Glycolysis, Migration, and Invasion in Glioblastoma Cells: Role of the Akt/HIF1α/HK-2 Signaling Axis.
2-Deoxy-d-glucose (2-DG), a synthetic glycolytic inhibitor, is currently under clinical evaluation as a promising anticancer agent. However, 2-DG treatment in cancer cells activates prosurvival Akt signaling that might limit its clinical efficacy. The NADPH oxidase 4 (Nox-4)/reactive oxygen species/Akt signaling is known to regulate survival, proliferation, infiltration, and invasion in glioblastomas (GBMs). The enhanced motility, invasiveness, and therapy resistance in GBMs are attributed to metabolic adaptation through increased aerobic glycolysis. Therefore, we hypothesized that inhibition of the Nox-4 might enhance 2-DG-induced suppression of glycolysis, migration, and invasion in GBM cells.. We identified the natural naphthoquinone compound shikonin as a potent inhibitor of the Nox-4/Akt signaling pathway. The combined treatment of shikonin+2-DG suppressed the glycolytic phenotype, migration, and invasion through modulation of the Akt/HIF1α/hexokinase-2 signaling axis in GBM cells. The combination also exhibited enhanced antiproliferative and antiangiogenic effects in vivo.. Our data for the first time demonstrate that inhibition of the Nox-4-associated prosurvival signaling pathway by shikonin enhances the antiproliferative and antiangiogenic potential of 2-DG in GBM cells.. In summary, the combined inhibition of Nox-4 and glycolysis may have therapeutic implications for the management of GBMs. Topics: Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Cell Movement; Deoxyglucose; Enzyme Inhibitors; Glioblastoma; Glycolysis; Humans; NADPH Oxidases; Naphthoquinones; Neoplasm Invasiveness; Proto-Oncogene Proteins c-akt; Signal Transduction | 2015 |
Enhanced antitumor effect of shikonin by inhibiting Endoplasmic Reticulum Stress via JNK/c-Jun pathway in human glioblastoma stem cells.
Though previous study demonstrated that shikonin could exert its antitumor activity by inducing apoptosis and necrosis, the pro-survival mechanisms involved in its antitumor process are still little to know. In the present study, for the first time, we found a protective mechanism was simultaneously activated which caused the reduced sensitivity of glioblastoma stem cells (GSCs) to the cytotoxicity of shikonin. Reduced active caspase-9 expression and enhanced mitochondrial membrane potential (MMP) were intriguingly observed within 24 h treatment by shikonin in GSCs. Further investigation identified that Endoplasmic Reticulum Stress (ERS) was involved in its antitumor process, which compromised the cytotoxicity of shikonin toward GSCs. Inhibiting ERS by 4-phenylbutyric acid (4-PBA) markedly enhanced the cytotoxicity of shikonin in GSCs. The consistent result was simultaneously observed in the GSCs-xenografted mice. Furthermore, our results identified that JNK/c-Jun pathway was involved in the antitumor process of shikonin, providing a mechanism by which ERS reduced the cytotoxicity of shikonin toward GSCs. Altogether, the novel observation in the present study identified that inhibiting ERS would be an attractive new approach to enhance the therapeutic potency of shikonin toward GSCs. Topics: Animals; Antineoplastic Agents, Phytogenic; Cells, Cultured; Drugs, Chinese Herbal; Endoplasmic Reticulum Stress; Glioblastoma; Humans; JNK Mitogen-Activated Protein Kinases; Male; MAP Kinase Signaling System; Mice, Nude; Naphthoquinones; Neoplastic Stem Cells | 2015 |
Shikonin Inhibits the Migration and Invasion of Human Glioblastoma Cells by Targeting Phosphorylated β-Catenin and Phosphorylated PI3K/Akt: A Potential Mechanism for the Anti-Glioma Efficacy of a Traditional Chinese Herbal Medicine.
Shikonin is an anthraquinone derivative extracted from the root of lithospermum. Shikonin is traditionally used in the treatment of inflammatory and infectious diseases such as hepatitis. Shikonin also inhibits proliferation and induces apoptosis in various tumors. However, the effect of shikonin on gliomas has not been fully elucidated. In the present study, we aimed to investigate the effects of shikonin on the migration and invasion of human glioblastoma cells as well as the underlying mechanisms. U87 and U251 human glioblastoma cells were treated with shikonin at 2.5, 5, and 7.5 μmol/L and cell viability, migration and invasiveness were assessed with CCK8, scratch wound healing, in vitro Transwell migration, and invasion assays. The expression and activity of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) and the expression of phosphorylated β-catenin (p-β-catenin) and phosphorylated PI3K/Akt were also checked. Results showed that shikonin significantly inhibited the cell proliferation, migration, invasion, and expression of MMP-2 and MMP-9 in U87 and U251 cells. The expression of p-β-catenin showed contrary trends in two cell lines. It was significantly inhibited in U87 cells and promoted in U251 cells. Results in this work indicated that shikonin displayed an inhibitory effect on the migration and invasion of glioma cells by inhibiting the expression and activity of MMP-2 and -9. In addition, shikonin also inhibited the expression of p-PI3K and p-Akt to attenuate cell migration and invasion and MMP-2 and MMP-9 expression in both cell lines, which could be reversed by the PI3K/Akt pathway agonist, insulin-like growth factor-1 (IGF-1). Topics: beta Catenin; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Drugs, Chinese Herbal; Glioblastoma; Humans; Insulin-Like Growth Factor I; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Medicine, Chinese Traditional; Naphthoquinones; Neoplasm Invasiveness; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Proto-Oncogene Proteins c-akt; RNA Interference; RNA, Small Interfering; Signal Transduction | 2015 |