shikonin has been researched along with Bone-Neoplasms* in 4 studies
4 other study(ies) available for shikonin and Bone-Neoplasms
Article | Year |
---|---|
Shikonin derivatives cause apoptosis and cell cycle arrest in human chondrosarcoma cells via death receptors and MAPK regulation.
Although chondrosarcoma is the second most common primary malignant bone tumor, treatment options are limited due to its extensive resistance to a chemo- and radiation therapy. Since shikonin has shown potent anticancer activity in various types of cancer cells, it represents a promising compound for the development of a new therapeutic approach.. The dose-relationships of shikonin and its derivatives acetylshikonin and cyclopropylshikonin on two human chondrosarcoma cell lines were measured using the CellTiter-Glo®. The changes in the cell cycle were presented by flow cytometry. Protein phosphorylation and expression apoptotic markers, MAPKs and their downstream targets were analyzed using western blotting and gene expression were evaluated using RT-qPCR.. These data demonstrated the significant anti-tumorigenic effect of shikonin derivatives in chondrosarcoma and encourage further research. Topics: Apoptosis; Bone Neoplasms; Cell Cycle Checkpoints; Cell Line, Tumor; Chondrosarcoma; Humans; Mitogen-Activated Protein Kinases; Naphthoquinones; Receptors, Death Domain | 2022 |
Shikonin promotes adriamycin‑induced apoptosis by upregulating caspase‑3 and caspase‑8 in osteosarcoma.
Osteosarcoma is the most common primary malignant bone tumor. Cancer cells employ a host of mechanisms to develop resistance to adriamycin (ADM) or other chemotherapeutic drugs. Shikonin (SK), an active constituent extracted from a Chinese medicinal herb, has been shown to cooperate with ADM in the treatment of osteosarcoma and certain other types of cancer by contributing to the response rate of chemotherapy and the side effects. The aim of the present study was to investigate the role and underlying mechanism of SK in chemotherapy for osteosarcoma. In the present study, a CCK-8 assay was performed to assess cell survival rate in vitro. Western blot analysis was performed to determine the expression levels of B‑cell lymphoma 2‑associated X protein (Bax), caspase‑3, caspase‑8, and poly (ADP‑ribose) polymerase (PARP). Flow cytometry was used to analyze cell cycle and cell death. The survival rate of cells decreased significantly in a dose‑ and time‑dependent manner when treated with a combination of SK and ADM. Western blot analysis revealed increased expression levels of Bax, caspase‑3, caspase‑8 and PARP in U2OS and MG63 cells 48 h following treatment with SK and ADM. Flow cytometric analysis showed that the combined treatment of SK and ADM significantly induced apoptosis in the osteosarcoma cells. Taken together SK cooperated with ADM to promote apoptosis, possibly by inducing caspase‑3‑ and caspase‑8‑dependent apoptosis. SK may be a potential enhancer in the treatment of drug‑resistant primary osteosarcoma. Topics: Antibiotics, Antineoplastic; Apoptosis; Bone Neoplasms; Caspase 3; Caspase 8; Cell Line, Tumor; Cell Proliferation; Cell Survival; Doxorubicin; Drug Synergism; Humans; Naphthoquinones; Osteosarcoma | 2017 |
The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis.
Osteosarcoma is the most frequent primary malignant bone tumor, notorious for its lung metastasis. Shikonin, an effective constituent extracted from Chinese medicinal herb, was demonstrated to induce necroptosis in some cancers.. MTT assay was performed to detect cell survival rate in vitro. Flow cytometry was used to analyze cell cycle and cell death. Western blot was performed to determine the expression levels of RIP1, RIP3, caspase-3, caspase-6 and PARP. The tibial primary and lung metastatic osteosarcoma models were used to evaluate the anti-tumor effect of shikonin in vivo.. The cell survival rate was decreased in a dose and time dependent manner when treated with shikonin. No major change in cell cycle was observed after shikonin treatment. The cell death induced by shikonin could be mostly rescued by specific necroptosis inhibitor necrostatin-1, but not by general caspase inhibitor Z-VAD-FMK. The number of necrotic cells caused by shikonin was decreased after being pretreated with Nec-1 detected by flow cytometry in K7 cells. After 8-hour treatment of shikonin, the expression levels of RIP1 and RIP3 were increased while caspase-3, caspase-6 and PARP were not activated in K7 and U2OS cells determined by Western blot. Size of primary tumor and lung metastasis in shikonin treated group were significantly reduced. The protein levels of RIP1 and RIP3 in primary tumor tissues were increased by shikonin. The overall survival of lung metastatic models was longer compared with control group (p < 0.001).. Shikonin had prompt but profound anti-tumor effect on both primary and metastatic osteosarcoma, probably by inducing RIP1 and RIP3 dependent necroptosis. Shikonin would be a potential anti-tumor agent on the treatment of primary and metastatic osteosarcoma. Topics: Animals; Antineoplastic Agents; Apoptosis; Bone Neoplasms; Cell Line, Tumor; Cell Survival; Drug Screening Assays, Antitumor; Drugs, Chinese Herbal; Female; Humans; Lung Neoplasms; Mice; Mice, Inbred BALB C; Naphthoquinones; Necrosis; Neoplasm Transplantation; Nuclear Pore Complex Proteins; Osteosarcoma; Receptor-Interacting Protein Serine-Threonine Kinases; RNA-Binding Proteins; Up-Regulation | 2013 |
Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells.
Shikonin, a major ingredient in the Chinese traditional herb Lithospermum erythrorhixon, exhibits multiple biological functions including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we delineated the molecular mechanisms of shikonin in the apoptosis of 143B osteosarcoma cells. Shikonin reduced the cell viability of 143B cells in a dose- and time-dependent manner. The IC(50) at 24 h and 48 h for 143B cells was 4.55 and 2.01microM, respectively. A significantly elicited hypodiploid cell population was found in cells treated with 2, 4, and 8microM shikonin for 24 h. Moreover, treatment with shikonin induced reactive oxygen species (ROS) generation, increased extracellular signal-regulated kinase (ERK) phosphorylation, decreased B-cell lymphoma-2 (Bcl2) expression, and was accompanied by poly(ADP-ribose) polymerase (PARP) cleavage. Pretreatment with the antioxidant agent N-acetyl cysteine (NAC) not only reversed shikonin-induced ROS generation but also significantly attenuated the cytotoxic effects of shikonin in 143B cells. Furthermore, NAC attenuated shikonin-induced ERK phosphorylation. Taken together, our results reveal that shikonin increased ROS generation and ERK activation, and reduced Bcl2, which consequently caused the cells to undergo apoptosis. Therefore, shikonin may be a promising chemotherapeutic agent for osteosarcoma treatment. Topics: Acetylcysteine; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents, Phytogenic; Antioxidants; Apoptosis; Bone Neoplasms; Cell Line, Tumor; Dose-Response Relationship, Drug; Drugs, Chinese Herbal; Extracellular Signal-Regulated MAP Kinases; Humans; Inhibitory Concentration 50; Naphthoquinones; Osteosarcoma; Phosphorylation; Phytotherapy; Poly(ADP-ribose) Polymerases; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species | 2010 |