sew2871 has been researched along with Stroke* in 2 studies
2 other study(ies) available for sew2871 and Stroke
Article | Year |
---|---|
Sphingosine-1-Phosphate Receptor-1 Selective Agonist Enhances Collateral Growth and Protects against Subsequent Stroke.
Collateral growth after acute occlusion of an intracranial artery is triggered by increasing shear stress in preexisting collateral pathways. Recently, sphingosine-1-phosphate receptor-1 (S1PR1) on endothelial cells was reported to be essential in sensing fluid shear stress. Here, we evaluated the expression of S1PR1 in the hypoperfused mouse brain and investigated the effect of a selective S1PR1 agonist on leptomeningeal collateral growth and subsequent ischemic damage after focal ischemia.. In C57Bl/6 mice (n = 133) subjected to unilateral common carotid occlusion (CCAO) and sham surgery. The first series examined the time course of collateral growth, cell proliferation, and S1PR1 expression in the leptomeningeal arteries after CCAO. The second series examined the relationship between pharmacological regulation of S1PR1 and collateral growth of leptomeningeal anastomoses. Animals were randomly assigned to one of the following groups: LtCCAO and daily intraperitoneal (i.p.) injection for 7 days of an S1PR1 selective agonist (SEW2871, 5 mg/kg/day); sham surgery and daily i.p. injection for 7 days of SEW2871 after surgery; LtCCAO and daily i.p. injection for 7 days of SEW2871 and an S1PR1 inverse agonist (VPC23019, 0.5 mg/kg); LtCCAO and daily i.p. injection of DMSO for 7 days after surgery; and sham surgery and daily i.p. injection of DMSO for 7 days. Leptomeningeal anastomoses were visualized 14 days after LtCCAO by latex perfusion method, and a set of animals underwent subsequent permanent middle cerebral artery occlusion (pMCAO) 7 days after the treatment termination. Neurological functions 1 hour, 1, 4, and 7 days and infarction volume 7 days after pMCAO were evaluated.. In parallel with the increase in S1PR1 mRNA levels, S1PR1 expression colocalized with endothelial cell markers in the leptomeningeal arteries, increased markedly on the side of the CCAO, and peaked 7 days after CCAO. Mitotic cell numbers in the leptomeningeal arteries increased after CCAO. Administration of the S1PR1 selective agonist significantly increased cerebral blood flow (CBF) and the diameter of leptomeningeal collateral vessels (42.9 ± 2.6 μm) compared with the controls (27.6 ± 5.7 μm; P < 0.01). S1PR1 inverse agonist administration diminished the effect of the S1PR1 agonist (P < 0.001). After pMCAO, S1PR1 agonist pretreated animals showed significantly smaller infarct volume (17.5% ± 4.0% vs. 7.7% ± 4.0%, P < 0.01) and better functional recovery than vehicle-treated controls.. These results suggest that S1PR1 is one of the principal regulators of leptomeningeal collateral recruitment at the site of increased shear stress and provide evidence that an S1PR1 selective agonist has a role in promoting collateral growth and preventing of ischemic damage and neurological dysfunction after subsequent stroke in patients with intracranial major artery stenosis or occlusion. Topics: Animals; Dimethyl Sulfoxide; Disease Models, Animal; Endothelial Cells; Male; Mice; Oxadiazoles; Receptors, Lysosphingolipid; Sphingosine-1-Phosphate Receptors; Stroke; Thiophenes; Time Factors | 2015 |
Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats.
FTY720 is a known sphingosine 1-phosphate receptor agonist. In the present study, we investigated the neuroprotective effect of postischemic administration of FTY720 in rats with 2 hours transient middle cerebral artery occlusion (MCAO).. One hundred eleven male rats were randomly assigned to sham-operated and MCAO treated with vehicle, 0.25 mg/kg and 1 mg/kg of FTY720, another selective sphingosine 1-phosphate receptor-1 agonist SEW2871 (5 mg/kg), or 0.25 mg/kg of FTY720 plus a sphingosine 1-phosphate antagonist, VPC23019 (0.5 mg/kg). Drugs were injected intraperitoneally immediately after reperfusion. Neurological score and infarct volume were assessed at 24 and 72 hours after MCAO. Western blotting, immunohistochemistry, and terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling were conducted at 24 hours after MCAO.. FTY720 significantly reduced infarct volume and improved neurological score at 24 and 72 hours after MCAO compared with the vehicle group. SEW2871 showed similar neuroprotective effects to FTY720, whereas VPC 20319 abolished the neuroprotective effects of FTY720. FTY720 significantly retained Akt and extracellular signal-regulated kinase phosphorylation and Bcl-2 expression and decreased cleaved caspase-3 expression and terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling-positive neurons at 24 hours after MCAO. VPC23019 blocked the antiapoptotic effects of FTY720.. These data suggest that activation of sphingosine 1-phosphate-1 by FTY720 reduces neuronal death after transient MCAO. Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Brain; Brain Ischemia; Disease Models, Animal; Drug Administration Schedule; Fingolimod Hydrochloride; Immunosuppressive Agents; In Situ Nick-End Labeling; Infarction, Middle Cerebral Artery; Male; MAP Kinase Signaling System; Nerve Degeneration; Neuroprotective Agents; Oxadiazoles; Propylene Glycols; Rats; Rats, Sprague-Dawley; Receptors, Lysosphingolipid; Sphingosine; Stroke; Thiophenes; Treatment Outcome | 2010 |