sew2871 and Ischemia

sew2871 has been researched along with Ischemia* in 2 studies

Other Studies

2 other study(ies) available for sew2871 and Ischemia

ArticleYear
Sphinganine-1-phosphate protects kidney and liver after hepatic ischemia and reperfusion in mice through S1P1 receptor activation.
    Laboratory investigation; a journal of technical methods and pathology, 2010, Volume: 90, Issue:8

    Liver failure due to ischemia and reperfusion (IR) and subsequent acute kidney injury are significant clinical problems. We showed previously that liver IR selectively reduced plasma sphinganine-1-phosphate levels without affecting sphingosine-1-phosphate (S1P) levels. Furthermore, exogenous sphinganine-1-phosphate protected against both liver and kidney injury induced by liver IR. In this study, we elucidated the signaling mechanisms of sphinganine-1-phosphate-mediated renal and hepatic protection. A selective S1P(1) receptor antagonist blocked the hepatic and renal protective effects of sphinganine-1-phosphate, whereas a selective S1P(2) or S1P(3) receptor antagonist was without effect. Moreover, a selective S1P(1) receptor agonist, SEW-2871, provided similar degree of liver and kidney protection compared with sphinganine-1-phosphate. Furthermore, in vivo gene knockdown of S1P(1) receptors with small interfering RNA abolished the hepatic and renal protective effects of sphinganine-1-phosphate. In contrast to sphinganine-1-phosphate, S1P's hepatic protection was enhanced with an S1P(3) receptor antagonist. Inhibition of extracellular signal-regulated kinase, Akt or pertussis toxin-sensitive G-proteins blocked sphinganine-1-phosphate-mediated liver and kidney protection in vivo. Taken together, our results show that sphinganine-1-phosphate provided renal and hepatic protection after liver IR injury in mice through selective activation of S1P(1) receptors and pertussis toxin-sensitive G-proteins with subsequent activation of ERK and Akt.

    Topics: Acute Kidney Injury; Animals; Extracellular Signal-Regulated MAP Kinases; Ischemia; Kidney; Liver; Liver Diseases; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Mitogen-Activated Protein Kinases; Oxadiazoles; Proto-Oncogene Proteins c-akt; Receptors, Lysosphingolipid; Reperfusion Injury; Signal Transduction; Sphingosine; Thiophenes

2010
S1P(1)-selective agonist, SEW2871, ameliorates ischemic acute renal failure.
    Kidney international, 2006, Volume: 69, Issue:9

    The pathogenesis of renal ischemia/reperfusion (I/R) injury involves activating several signal transduction cascade systems in endothelial cells. Sphingosine 1-phospate (S1P) maintains endothelial cell integrity and inhibits lymphocyte egress via the specific S1P(1) receptor, and may play a role in reducing ischemic renal injury. We examined the protective effects of a newly identified S1P(1)-selective agonist, SEW2871, on mouse renal I/R injury. Kidneys were harvested 1-4 days after I/R injury for histopathology, immunofluorescence studies, and quantitative real-time reverse transcriptase-polymerase chain reaction analyses to assess the change in gene expression profiles of inflammation-associated cytokines and adhesion molecules. SEW2871 improved renal function with a 40% reduction in plasma creatinine levels (P<0.01) and a significant reduction in tubular necrosis scores (I/R only: 4.3+/-0.2 vs I/R+SEW2871: 2.5+/-0.4, P<0.05) 24 h after ischemia. These changes were accompanied by 69% reduction in circulating lymphocytes, and 77 and 66% reduction in infiltrating neutrophils and macrophages in renal outer medulla, respectively (all P<0.01). The mRNA abundance of tumor necrotic factor-alpha (TNF-alpha), P-selectin, E-selectin, and intercellular adhesion molecule-1 (ICAM-1) was markedly increased by I/R injury (3.5-, 4.1-, 3.5-, and 4.8-folds, respectively, all P<0.05 vs sham). SEW2871 treatment partially reversed the upregulation of TNF-alpha, P-selectin, and ICAM-1 (47, 59, 54%, respectively, vs I/R control: 100%, all P<0.05). The reduction in protein expression of TNF-alpha, P-selectin, and ICAM-1 was further confirmed with immunofluorescence studies. These results suggest that SEW2871 ameliorates renal I/R injury by inhibiting lymphocyte egress and reducing pro-inflammatory molecules. This new class of renoprotective agent shows promise as a novel approach in preventing/treating ischemic acute renal failure.

    Topics: Acute Kidney Injury; Animals; Cell Adhesion Molecules; Down-Regulation; Ischemia; Kidney; Leukocyte Count; Male; Mice; Oxadiazoles; Receptors, Lysosphingolipid; Reperfusion Injury; RNA, Messenger; Thiophenes; Tumor Necrosis Factor-alpha

2006