sew2871 has been researched along with Ischemia* in 2 studies
2 other study(ies) available for sew2871 and Ischemia
Article | Year |
---|---|
Sphinganine-1-phosphate protects kidney and liver after hepatic ischemia and reperfusion in mice through S1P1 receptor activation.
Liver failure due to ischemia and reperfusion (IR) and subsequent acute kidney injury are significant clinical problems. We showed previously that liver IR selectively reduced plasma sphinganine-1-phosphate levels without affecting sphingosine-1-phosphate (S1P) levels. Furthermore, exogenous sphinganine-1-phosphate protected against both liver and kidney injury induced by liver IR. In this study, we elucidated the signaling mechanisms of sphinganine-1-phosphate-mediated renal and hepatic protection. A selective S1P(1) receptor antagonist blocked the hepatic and renal protective effects of sphinganine-1-phosphate, whereas a selective S1P(2) or S1P(3) receptor antagonist was without effect. Moreover, a selective S1P(1) receptor agonist, SEW-2871, provided similar degree of liver and kidney protection compared with sphinganine-1-phosphate. Furthermore, in vivo gene knockdown of S1P(1) receptors with small interfering RNA abolished the hepatic and renal protective effects of sphinganine-1-phosphate. In contrast to sphinganine-1-phosphate, S1P's hepatic protection was enhanced with an S1P(3) receptor antagonist. Inhibition of extracellular signal-regulated kinase, Akt or pertussis toxin-sensitive G-proteins blocked sphinganine-1-phosphate-mediated liver and kidney protection in vivo. Taken together, our results show that sphinganine-1-phosphate provided renal and hepatic protection after liver IR injury in mice through selective activation of S1P(1) receptors and pertussis toxin-sensitive G-proteins with subsequent activation of ERK and Akt. Topics: Acute Kidney Injury; Animals; Extracellular Signal-Regulated MAP Kinases; Ischemia; Kidney; Liver; Liver Diseases; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Mitogen-Activated Protein Kinases; Oxadiazoles; Proto-Oncogene Proteins c-akt; Receptors, Lysosphingolipid; Reperfusion Injury; Signal Transduction; Sphingosine; Thiophenes | 2010 |
S1P(1)-selective agonist, SEW2871, ameliorates ischemic acute renal failure.
The pathogenesis of renal ischemia/reperfusion (I/R) injury involves activating several signal transduction cascade systems in endothelial cells. Sphingosine 1-phospate (S1P) maintains endothelial cell integrity and inhibits lymphocyte egress via the specific S1P(1) receptor, and may play a role in reducing ischemic renal injury. We examined the protective effects of a newly identified S1P(1)-selective agonist, SEW2871, on mouse renal I/R injury. Kidneys were harvested 1-4 days after I/R injury for histopathology, immunofluorescence studies, and quantitative real-time reverse transcriptase-polymerase chain reaction analyses to assess the change in gene expression profiles of inflammation-associated cytokines and adhesion molecules. SEW2871 improved renal function with a 40% reduction in plasma creatinine levels (P<0.01) and a significant reduction in tubular necrosis scores (I/R only: 4.3+/-0.2 vs I/R+SEW2871: 2.5+/-0.4, P<0.05) 24 h after ischemia. These changes were accompanied by 69% reduction in circulating lymphocytes, and 77 and 66% reduction in infiltrating neutrophils and macrophages in renal outer medulla, respectively (all P<0.01). The mRNA abundance of tumor necrotic factor-alpha (TNF-alpha), P-selectin, E-selectin, and intercellular adhesion molecule-1 (ICAM-1) was markedly increased by I/R injury (3.5-, 4.1-, 3.5-, and 4.8-folds, respectively, all P<0.05 vs sham). SEW2871 treatment partially reversed the upregulation of TNF-alpha, P-selectin, and ICAM-1 (47, 59, 54%, respectively, vs I/R control: 100%, all P<0.05). The reduction in protein expression of TNF-alpha, P-selectin, and ICAM-1 was further confirmed with immunofluorescence studies. These results suggest that SEW2871 ameliorates renal I/R injury by inhibiting lymphocyte egress and reducing pro-inflammatory molecules. This new class of renoprotective agent shows promise as a novel approach in preventing/treating ischemic acute renal failure. Topics: Acute Kidney Injury; Animals; Cell Adhesion Molecules; Down-Regulation; Ischemia; Kidney; Leukocyte Count; Male; Mice; Oxadiazoles; Receptors, Lysosphingolipid; Reperfusion Injury; RNA, Messenger; Thiophenes; Tumor Necrosis Factor-alpha | 2006 |